Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8,1-\left(x-6\right)=4\left(2-2x\right)\)
\(\Leftrightarrow1-x+6=8-8x\)
\(\Leftrightarrow-x+8x=8-1-6\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\dfrac{1}{7}\)
\(9,\left(3x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)
\(10,\left(x+3\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)
`8)1-(x-5)=4(2-2x)`
`<=>1-x+5=8-6x`
`<=>5x=2<=>x=2/5`
`9)(3x-2)(x+5)=0`
`<=>[(x=2/3),(x=-5):}`
`10)(x+3)(x^2+2)=0`
Mà `x^2+2 > 0 AA x`
`=>x+3=0`
`<=>x=-3`
`11)(5x-1)(x^2-9)=0`
`<=>(5x-1)(x-3)(x+3)=0`
`<=>[(x=1/5),(x=3),(x=-3):}`
`12)x(x-3)+3(x-3)=0`
`<=>(x-3)(x+3)=0`
`<=>[(x=3),(x=-3):}`
`13)x(x-5)-4x+20=0`
`<=>x(x-5)-4(x-5)=0`
`<=>(x-5)(x-4)=0`
`<=>[(x=5),(x=4):}`
`14)x^2+4x-5=0`
`<=>x^2+5x-x-5=0`
`<=>(x+5)(x-1)=0`
`<=>[(x=-5),(x=1):}`
1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)
=>-13x=0
=>x=0
2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
=>3x=13
=>x=13/3
3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)
=>-2x^2=0
=>x=0
4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
=>-8x=6-14=-8
=>x=1
`1)2x(x-5)-(3x+2x^2)=0`
`<=>2x^2-10x-3x-2x^2=0`
`<=>-13x=0`
`<=>x=0`
___________________________________________________
`2)x(5-2x)+2x(x-1)=13`
`<=>5x-2x^2+2x^2-2x=13`
`<=>3x=13<=>x=13/3`
___________________________________________________
`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`
`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`
`<=>x=0`
___________________________________________________
`4)5x(x-1)-(x+2)(5x-7)=0`
`<=>5x^2-5x-5x^2+7x-10x+14=0`
`<=>-8x=-14`
`<=>x=7/4`
___________________________________________________
`5)6x^2-(2x-3)(3x+2)=1`
`<=>6x^2-6x^2-4x+9x+6=1`
`<=>5x=-5<=>x=-1`
___________________________________________________
`6)2x(1-x)+5=9-2x^2`
`<=>2x-2x^2+5=9-2x^2`
`<=>2x=4<=>x=2`
1. (3x - 5)2 - (3x + 1)2 = 8
=> (3x - 5 - 3x - 1)(3x - 5 + 3x + 1) = 8
=> -6(6x - 4) = 8
=> 6x - 4 = \(\dfrac{-4}{3}\)
\(\Rightarrow x=\dfrac{4}{9}\)
2) 2x(8x - 3) - (4x - 3)2 = 27
=> 16x2 - 6x - 16x2 + 24x - 9 = 27
=> 18x - 9 = 27
=> x = 2
3) (2x - 3)2 - (2x + 1)2 = 3
=> (2x - 3 - 2x - 1)(2x - 3 + 2x +1) = 3
=> -4(4x - 2) = 3
=> 4x - 2 = \(\dfrac{-3}{4}\)
\(\Rightarrow x=\dfrac{5}{16}\)
4) (x + 5)2 - x2 = 45
=> (x + 5 - x)(x + 5 + x) = 45
=> 5(2x + 5) = 45
=> 2x + 5 = 9
=> x = 2
5) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 18
=> x3 - 9x2 + 27x - 27 - x3 + 27 + 9(x2 + 2x + 1) = 18
=> -9x2 + 27x + 9x2 + 18x + 9 = 18
=> 45x + 9 = 18
=> 45x = 9
=> x = \(\dfrac{1}{5}\)
6) x(x - 4)(x + 4) - (x - 5)(x2 + 5x + 25) = 13
=> x (x2 - 16) - (x3 - 125) = 13
=> x3 - 16x - x3 + 125 = 13
=> -16x = -112
=> x = 7.
Đặt \(2^x-8=u;4^x+13=v\)
Phương trình trở thành \(u^3+v^3=\left(u+v\right)^3\)
\(\Rightarrow u^3+v^3=u^3+3uv\left(u+v\right)+v^3\)
\(\Rightarrow3uv\left(u+v\right)=0\)
*) \(u=0\Rightarrow2^x-8=0\Rightarrow x=3\)
\(v=0\Rightarrow4^x=-13\)(không tồn tại nghiệm thực)
\(u+v=0\Rightarrow2^x+4^x=-5\)(không tồn tại nghiệm thực)
Vậy nghiệm duy nhất của phương trình là 3
\(\left(2^x-8\right)^3+\left(4^x+13\right)^3=\left(4^x+2^x+5\right)^3\)
Đặt \(\left\{{}\begin{matrix}2^x-8=a\\4^x+13=b\end{matrix}\right.\) thì ta có:
\(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)^3\)
\(\Leftrightarrow ab\left(a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\b=0\\a+b=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2^x-8=0\\4^x+13=0\left(l\right)\\4^x+2^x+5=0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=3\)
a/ \(x=\dfrac{-5}{12}\)
b/ \(x\approx-1,9526\)
c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)
d/ \(x=\dfrac{-20}{13}\)
1, \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
\(\Leftrightarrow-4x^2+28x+4x^3-20x=28x^2-13\)
\(\Leftrightarrow-32x^2+8x+4x^3-13=0\)( vô nghiệm )
2, \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
\(\Leftrightarrow12x^3-7x^2-10x-7x^2-35x=-2x^2+11x-12+12x^3+2x^2\)
\(\Leftrightarrow12x^3-14x^2-45x=11x-12+12x^3\)
\(\Leftrightarrow-14x^2-56x-12=0\)( vô nghiệm )
Mình làm riêng ra nhá , chứ nhiều quá nên thông cảm cho mình :))
1. \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
=> \(-4x^2+28x+4x^3-20x=28x^2-13\)
=> \(-4x^2+4x^3+\left(28x-20x\right)=28x^2-13\)
=> \(-4x^2+4x^3+8x-28x^2+13=0\)
=> \(\left(-4x^2-28x^2\right)+4x^3+8x+13=0\)
=> \(-32x^2+4x^3+8x+13=0\)
=> vô nghiệm
2. \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
=> \(4x^2\left(3x+2\right)-5x\left(3x+2\right)-7x\left(x+5\right)=-4\left(-2x+3\right)+x\left(-2x+3\right)+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x=8x-12-2x^2+3x+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x-8x+12+2x^2-3x-12x^3-2x^2=0\)
=> \(\left(12x^3-12x^3\right)+\left(8x^2-15x^2-7x^2+2x^2-2x^2\right)+\left(-10x-35x-8x-3x\right)+12=0\)
=> \(-14x^2-56x+12=0\)
=> .... tự tìm
Câu c dấu bằng chỗ nào ?
(2x−8)3 + (4x+13)3 = (4x+2x+5)3
\(\Leftrightarrow\)(2x - 8 + 4x + 13) [(2x - 8)2 + (2x-8)(4x + 13) + (4x + 13)2] = (4x + 2x +5)3
\(\Leftrightarrow\)(2x + 4x + 5) [(2x - 8)2 + (2x-8)(4x + 13) + (4x + 13)2] = (4x + 2x +5)3
\(\Leftrightarrow\)(2x - 8)2 + (2x-8)(4x + 13) + (4x + 13)2= (4x + 2x +5)2
\(\Leftrightarrow\)(2x -8 + 4x + 13)2 - (2x -8)(4x + 13) = (4x + 2x +5)2
\(\Leftrightarrow\)(4x +2x + 5)2 - (2x -8)(4x +13) = (4x + 2x +5)2
\(\Leftrightarrow\) (2x - 8) (4x + 13) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2^x-8=0\\4^x+13=0\end{matrix}\right.\Leftrightarrow}x=4\)
Vậy x = 4.