K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

A=\(\frac{1+\frac{2011}{2}+1+\frac{2010}{3}+1+...+\frac{1}{2012}+1+1}{\frac{1}{2}+...+\frac{1}{2013}}\)

A=\(\frac{\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+...+\frac{1}{2013}}\)

A=\(\frac{2013\left(\frac{1}{2}+...+\frac{1}{2013}\right)}{\frac{1}{2}+...+\frac{1}{2013}}\)

A=2013

Mà 2013: 3 = 671

Vậy A : 3 dư 0 hay\(A⋮3\)

4 tháng 3 2018

vì sao bạn lại 1+

22 tháng 11 2015

Xét tử:

\(2012+\frac{2011}{2}+\frac{2010}{3}+\frac{2009}{4}+...+\frac{1}{2012}\)

\(\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1\)

\(\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}\)

\(2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)

Thay vào ta có:

A = \(\frac{2013\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}\)

=> A = 2013 

Mà 2013 chia hết cho 3

=> A chia hết cho 3

22 tháng 11 2015

A = 2013  chia hết cho 3 nhé

14 tháng 2 2016

http://d.f24.photo.zdn.vn/upload/original/2016/02/14/10/03/3204324726_616688374_574_574.jpg

14 tháng 2 2016

có chia hết

30 tháng 11 2014

$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$

$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$

$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$

$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$

$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$

28 tháng 2 2015

dễ ợt nhưng éo biết làm thông cảm nha

 

6 tháng 8 2018

So sánh à bạn?

6 tháng 8 2018

A=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{2012}{2013}\)=\(\frac{1}{2013}\)

B=\(\frac{2012}{2012.2013}\)=\(\frac{1}{2013}\)

vậy A=B

17 tháng 11 2014

Áp dụng công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Ta có:

VT=\(x-\left(\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{3}\right)-...\left(\frac{1}{98}-\frac{1}{99}\right)-\left(\frac{1}{99}-\frac{1}{100}\right)\right)\)

=\(x-\frac{1}{100}\)

Dễ dàng tìm được 

\(x-\frac{1}{100}=\frac{1}{100}\) 

\(x=\frac{1}{50}\)

ta có:\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+...+\frac{1}{100}\)

\(\frac{2012}{51}+\frac{2012}{52}+...+\frac{2012}{100}=2012\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)

bài toán được viết lại như sau:

\(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right).x=2012\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)

\(\Rightarrow x=2012\left(\frac{1}{51}+...+\frac{1}{100}\right):\left(\frac{1}{51}+...+\frac{1}{100}\right)\)

\(\Rightarrow x=2012\)

vậy x=2012

30 tháng 5 2018

= ( 2011 * 2012 + 2012 * 2013 ) : ( 1/3 - 1/2 : 3/2 ) 

= ( 2011 * 2012 + 2012 * 2013 ) : ( 1/3 - 1/3 ) 

= ( 2011 * 2012 + 2012 * 2013 ) : 0 ( không chia được cho số 0 )

Bài toán không có kết quả 

30 tháng 5 2018

8096288:0

ko ra kq

8 tháng 9 2015

3/2