Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\left(x-\frac{7}{9}\right)^3=\left(\left(\frac{2}{3}\right)^2\right)^3\)
\(x-\frac{7}{9}=\frac{4}{9}\)
\(x=\frac{4}{9}+\frac{7}{9}\)
\(x=\frac{11}{9}\)
Vậy x=\(\frac{11}{9}\)
\(\frac{32-x}{7}=\frac{x-42}{9}\)
=\(\frac{\left(32-x\right)9}{63}=\frac{\left(x-42\right)7}{63}\)
\(\Rightarrow\)\(\left(32-x\right)9=\left(x-42\right)7\)
=\(288-x9=x7-294\)
=\(288+294=x9+x7\)
=\(x=-36\frac{6}{16}\)
=\(x\times16=-582\)
\(x=-582\div16\)
a,\(\frac{32-x}{7}=\frac{x-42}{9}\)
\(\Leftrightarrow9\left(32-x\right)=7\left(x-42\right)\)
\(\Leftrightarrow288-9x-7x-294=0\)
\(\Leftrightarrow9x+7x=288-294\)
\(\Leftrightarrow2x=-6\)
\(\Leftrightarrow x=-3\)
b. \(\left(2x-1\right)^2+\left|x+3\right|=0\)
\(\Leftrightarrow\left|x+3\right|=-4x^2+4x-1\)
\(\left|x+3\right|=x+3\)khi \(x+3\ge0\)hay \(x\ge-3\)
\(\left|x+3\right|=-\left(x+3\right)\)khi \(x+3< 0\)hay \(x< -3\)
với \(x\ge-3\Rightarrow x+3=-4x^2+4x-1\)
\(\Leftrightarrow4x^2-4x+1+x+3=0\)
\(\Leftrightarrow4x^2-3x+4=0\)\(\Leftrightarrow\)vô nghiệm
với \(x< -3\)\(\Rightarrow-x-3=-4x+4-1\)
\(\Leftrightarrow4x^2-4x+1-x-3=0\)
\(\Leftrightarrow4x^2-5x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{57}}{8}\left(tm\right)\\x=\frac{5-\sqrt{57}}{8}\left(L\right)\end{cases}}\)
a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)
=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)
=> \(\left|2-\frac{3}{2}x\right|=x+6\)
ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)
Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)
=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)
=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)
b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)
=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)
=> x = 1/4
hoặc x = 0 hoặc x = 1/2
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
\(\frac{2^{4-x}}{16^5}=32^6\)
=> \(\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
=> \(\frac{2^{4-x}}{2^{20}}=2^{30}\)
=> \(2^{4-x}=2^{30}.2^{20}\)
=> \(2^{4-x}=2^{50}\)
=> 4 - x = 50
=> x = 4 - 50 = -46
\(\frac{3^{2x+3}}{9^3}=9^{14}\)
=> \(\frac{3^{2x+3}}{\left(3^2\right)^3}=\left(3^2\right)^{14}\)
=> \(\frac{3^{2x+3}}{3^6}=3^{28}\)
=> \(3^{2x+3}=3^{28}.3^6\)
=> \(3^{2x+3}=3^{34}\)
=> 2x + 3 = 34
=> 2x = 34 - 3
=> 2x = 31
=> x = 31/2
1) \(\left(\frac{2x}{3}-3\right):\left(-10\right)=\frac{2}{5}\)
\(\Leftrightarrow-\frac{\frac{2x}{3}-3}{10}=\frac{2}{5}\)
\(\Leftrightarrow-\left(\frac{\frac{2x}{3}}{10}-\frac{3}{10}\right)=\frac{2}{5}\)
\(\Leftrightarrow-\left(\frac{2x}{3\times10}-\frac{3}{10}\right)=\frac{2}{5}\)
\(\Leftrightarrow-\left(\frac{2x}{30}-\frac{3}{10}\right)=\frac{2}{5}\)
\(\Leftrightarrow-\frac{x}{15}+\frac{3}{10}=\frac{2}{5}\)
\(\Leftrightarrow\frac{3}{10}-\frac{x}{15}=\frac{2}{5}\)
\(\Leftrightarrow-\frac{x}{15}=\frac{2}{5}-\frac{3}{10}\)
\(\Leftrightarrow-\frac{x}{15}=\frac{1}{10}\)
\(\Leftrightarrow-x=\frac{15}{10}\)
\(\Leftrightarrow-x=\frac{3}{2}\)
\(\Leftrightarrow x=-\frac{3}{2}\)
Vậy \(x=-\frac{3}{2}\)
2) \(\left|2x-1\right|+1=4\)
\(\Leftrightarrow\left|2x-1\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
Vậy \(x\in\left\{2;-1\right\}\)
a) 2^x+1=2^5
Suy ra x=5
tích gùm mk nha
a) Có: 2\(^5\) = 32
Nên 2\(^{x+1}\)= 32
Nên x+1 = 5
x = 5-1
x = 4
b) Hình như sai đề, bạn xem lại thử nha
c) (7\(^x\))\(^2\)= 7\(^{14}\)
7\(^x\) = 7\(^7\)
x = 7
d) Cái này cũng hơi có vấn đề này. Vì (-0.5)\(^5\)= \(\frac{-1}{32}\) mà xem lại nha!!