Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{3}{8}=\dfrac{6}{x}\\ \Rightarrow x=6:\dfrac{3}{8}\\ \Rightarrow x=16\\ b,\dfrac{1}{9}=\dfrac{x}{27}\\ \Rightarrow x=\dfrac{1}{9}.27\\ \Rightarrow x=3\\ c,\dfrac{4}{x}=\dfrac{8}{6}\\ \Rightarrow x=4:\dfrac{4}{3}\\ \Rightarrow x=3\\ d,\dfrac{3}{x-5}=\dfrac{-4}{x+2}\\ \Rightarrow3\left(x+2\right)=-4\left(x-5\right)\\ \Rightarrow3x+6=-4x+20\\ \Rightarrow3x+6+4x-20=0\\ \Rightarrow7x-14=0\\ \Rightarrow7x=14\\ \Rightarrow x=2\)
a: =>6/x=3/8
hay x=16
b: =>x/27=1/9
nên x=3
c: =>4/x=4/3
nên x=3
d: =>3/x-5=-4/x+2
=>3x+2=-4x+20
=>7x=18
hay x=18/7
` 8/23 . 46/24 =1/3 .x`
`=>8/23 . 23/12 =1/3 . x`
`=> 1/3 . x=2/3`
`=>x=2/3 : 1/3`
`=>x=2/3 . 3`
`=> x= 6/3`
`=>x=2`
`----`
`1/5 : x= 1/5-1/7`
`=>1/5 : x= 7/35 - 5/35`
`=> 1/5 :x= 2/35`
`=>x= 1/5 : 2/35`
`=>x=1/5 . 35/2`
`=>x=7/2`
`----`
`4/9 - (x-1/2)^2 =1/3`
`=> (x-1/2)^2 =4/9-1/3`
`=> (x-1/2)^2 =4/9- 3/9`
`=> (x-1/2)^2 =1/9`
`=> (x-1/2)^2 = (+- 1/3)^2`
`@ TH1`
`x-1/2=1/3`
`=>x=1/3+1/2`
`=>x= 2/6 + 3/6`
``=>x= 5/6`
`@ TH2`
`x-1/2=-1/3`
`=>x=-1/3 +1/2`
`=>x= -2/6 + 3/6`
`=>x=1/6`
`----`
`3,2 . x-(4/5+2/3) : 3 2/3 = 7/10`
`=> 3,2 . x-22/15 : 11/3 = 7/10`
`=> 3,2 . x-22/15 = 7/10 . 11/3`
`=> 3,2 . x-22/15 =77/30`
`=> 3,2 .x= 77/30 + 22/15`
`=> 3,2 .x=121/30`
`=>x= 121/30. 5/16`
`=>x= 121/96`
c: \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=-\sqrt{7}\\x=-5\\x=5\end{matrix}\right.\)
Giải:
a) \(2^5=4^x\)
\(\Rightarrow2^5=\left(2^2\right)^x\)
\(\Rightarrow2^5=2^{2x}\)
\(\Rightarrow2x=5\)
\(\Rightarrow x=\dfrac{5}{2}\)
b) \(2.4^2.8^3.16^4=8^x\)
\(\Rightarrow2.\left(2^2\right)^2.\left(2^3\right)^3.\left(2^4\right)^4=\left(2^3\right)^x\)
\(\Rightarrow2.2^4.2^9.2^{16}=2^{3x}\)
\(\Rightarrow2^{30}=2^{3x}\)
\(\Rightarrow3x=30\)
\(\Rightarrow x=30:3\)
\(\Rightarrow x=10\)
c) \(3^3:3^5=9^x\)
\(\Rightarrow3^{-2}=\left(3^2\right)^x\)
\(\Rightarrow3^{-2}=3^{2x}\)
\(\Rightarrow2x=-2\)
\(\Rightarrow x=-2:2\)
\(\Rightarrow x=-1\)
Chúc bạn học tốt!
a) Ta có: \(2^5=4^x\)
nên \(2^{2x}=2^5\)
\(\Leftrightarrow2x=5\)
hay \(x=\dfrac{5}{2}\)
b) Ta có: \(2\cdot4^2\cdot8^3\cdot16^4=8^x\)
\(\Leftrightarrow2^{3x}=2\cdot2^5\cdot2^9\cdot2^{16}=2^{31}\)
\(\Leftrightarrow3x=31\)
hay \(x=\dfrac{31}{3}\)
c) Ta có: \(3^3:3^5=9^x\)
\(\Leftrightarrow3^{-2}=3^{2x}\)
\(\Leftrightarrow2x=-2\)
hay x=-1
a) 2x . 4 = 128
<=> 2x = 32
<=> 2x = 25
<=> x = 5
b) x15 = x1
<=> x15 - x = 0
<=> x(x14 - 1) = 0
<=> \(\orbr{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{14}=1^{14}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
c) (2x + 1)3 = 125
<=> (2x + 1)3 = 53
<=> 2x + 1 = 5
<=> 2x = 4
<=> x = 2
d) (x - 5)4 = (x - 5)6
<=> (x - 5)6 - (x - 5)4 = 0
<=> (x - 5)4[(x - 5)2 - 1] = 0
<=> \(\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^2-1=0\end{cases}}\)
Khi (x - 5)4 = 0 => x - 5 = 0 => x = 5
Khi (x - 5)2 - 1 = 0 <=> (x - 5)2 = 12 <=> \(\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)
`@` ` \text {Ans}`
`\downarrow`
`a,`
`1/4+3/4*x=3/2-x`
`=> 1/4 + 3/4x - 3/2 + x = 0`
`=> (1/4 - 3/2) + (3/4x + x) = 0`
`=> -5/4 + 7/4x = 0`
`=> 7/4x = 5/4`
`=> x = 5/4 \div 7/4`
`=> x = 5/7`
Vậy, `x=5/7`
`b,`
`3/5*x-1/4=1/10*x-1/2`
`=> 3/5x - 1/4 - 1/10x + 1/2 = 0`
`=> (3/5x - 1/10x) + (-1/4 + 1/2)=0`
`=> 1/2x + 1/4 = 0`
`=> 1/2x = -1/4`
`=> x = -1/4 \div 1/2`
`=> x = -1/2`
Vậy, `x=-1/2`
`c,`
`3x-3/5=x-1/4`
`=> 3x - 3/5 - x + 1/4 = 0`
`=> (3x - x) - (3/5 - 1/4) = 0`
`=> 2x - 7/20 = 0`
`=> 2x = 0,35`
`=> x = 0,35 \div 2`
`=> x = 7/40`
Vậy, `x=7/40`
`d,`
`3/2*x-2/5=1/3*x-1/4`
`=> 3/2x - 2/5 - 1/3x + 1/4 = 0`
`=> (3/2x - 1/3x) - (2/5 - 1/4) = 0`
`=> 7/6x - 3/20 = 0`
`=> 7/6x = 3/20`
`=> x = 3/20 \div 7/6`
`=> x = 9/70`
Vậy, `x=9/70`
`@` `\text {Kaizuu lv uuu}`
6-10x76+5x11x12+4x14x15-230
=6-760+660+840-230
= -754+660+840-230
= -94+840-230
=746-230
=516
Lời giải:
a. Do $|x+1|+|x+2|\geq 0$ với mọi $x$ theo tính chất trị tuyệt đối
$\Rightarrow x\geq 0$
$\Rightarrow x+1, x+2>0\Rightarrow |x+1|=x+1; |x+2|=x+2$. Khi đó:
$(x+1)+(x+2)=x$
$\Leftrightarrow x=-3$ (loại do $x\geq 0$)
Vậy không tồn tại $x$ thỏa mãn
b. Tương tự phần a:
$|x+1|+|x+2|+|x+3|\geq 0\Rightarrow 2x\geq 0\Rightarrow x\geq 0$
$\Rightarrow x+1, x+2, x+3>0$
$\Rightarrow |x+1|=x+1; |x+2|=x+2; |x+3|=x+3$. Khi đó:
$(x+1)+(x+2)+(x+3)=2x$
$\Leftrightarrow x=-6< 0$ (loại)
Vậy không tồn tại $x$ thỏa mãn.
c.
$|x+1|+|x+2|+|x+3|+|x+4|\geq 0$
$\Rightarrow 3x\geq 0\Rightarrow x\geq 0$
$\Rightarrow x+1,x+2, x+3, x+4>0$
$\Rightarrow |x+1|=x+1, |x+2|=x+2, |x+3|=x+3, |x+4|=x+4$. Khi đó:
$(x+1)+(x+2)+(x+3)+(x+4)=3x$
$4x+10=3x$
$x=-10< 0$ (loại vì $x\geq 0$)
Vậy không tồn tại $x$ thỏa mãn
d.
$|x+1|+|x+2|+|x+3|+|x+4|+|x+5|\geq 0$
$\Rightarrow 4x\geq 0\Rightarrow x\geq 0\Rightarrow x+1,x+2,x+3,x+4,x+5>0$
$\Rightarrow |x+1|=x+1, |x+2|=x+2, |x+3|=x+3, |x+4|=x+4, |x+5|=x+5$. Khi đó:
$(x+1)+(x+2)+(x+3)+(x+4)+(x+5)=4x$
$5x+15=4x$
$x=-15< 0$ (loại vì $x\geq 0$)
Vậy không tồn tại $x$ thỏa đề.
a) x15 = x
=> x15 - x = 0
=> x(x14 - 1) = 0
=> x = 0
hoặc x14 - 1 = 0 => x14 = 1 => x = 1
=> x \(\in\){0;1}
bai nay de ma ban