K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) 2x(x+1)−x2(x+2)+x3−x+4=02x(x+1)−x2(x+2)+x3−x+4=0

⇔2x2+2x−x3−2x2+x3−x+4=0⇔2x2+2x−x3−2x2+x3−x+4=0

⇔x+4=0⇔x+4=0

⇔x=−4⇔x=−4

Vậy ...

b) 4x(3x+2)−6x(2x+5)+21(x−1)=04x(3x+2)−6x(2x+5)+21(x−1)=0

⇔12x2+8x−12x2−30x+21x−21=0⇔12x2+8x−12x2−30x+21x−21=0

⇔−x−21=0⇔−x−21=0

⇔x=−21⇔x=−21

Vậy ...

c) 5x(12x+7)−3x(2x−5)=−1005x(12x+7)−3x(2x−5)=−100

⇔60x2+35x−6x2+15x+100=0⇔60x2+35x−6x2+15x+100=0

⇔54x2+50x+100=0⇔54x2+50x+100=0

⇔54(x2+2527x+6252916)+2909752916=0⇔54(x2+2527x+6252916)+2909752916=0

⇔54(x+2554)2+2909752916=0(ktm)⇔54(x+2554)2+2909752916=0(ktm)

Vậy phương trình vô nghiệm.

d) x(x−1)−x2+2x=5x(x−1)−x2+2x=5

⇔x2−x−x2+2x−5=0⇔x2−x−x2+2x−5=0

⇔x−5=0⇔x−5=0

⇔x=5⇔x=5

Vậy ...

e) 2x3(2x−3)−x2(4x2−6x+2)=02x3(2x−3)−x2(4x2−6x+2)=0

⇔4x4−6x3−4x3+6x3−2x2=0⇔4x4−6x3−4x3+6x3−2x2=0

⇔−2x2=0⇔−2x2=0

⇔x=0⇔x=0

Vậy x = 0

a: Ta có: \(4\left(2-x\right)+x\left(x+6\right)=x^2\)

\(\Leftrightarrow8-4x+x^2+6x-x^2=0\)

\(\Leftrightarrow2x=-8\)

hay x=-4

b: Ta có: \(x\left(x-7\right)-\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow x^2-7x-x^2-3x+10=0\)

\(\Leftrightarrow-10x=-10\)

hay x=1

c: Ta có: \(\left(2x+3\right)\left(3-2x\right)+\left(2x-1\right)^2=2\)

\(\Leftrightarrow9-4x^2+4x^2-4x+1=2\)

\(\Leftrightarrow-4x=-8\)

hay x=2

27 tháng 2 2021

`a,x(x-1)-(x+2)^2=1`

`<=>x^2-x-x^2-4x-4=1`

`<=>-5x=5`

`<=>x=-1`

`b,(x+5)(x-3)-(x-2)^2=-1`

`<=>x^2+2x-15-x^2+4x-4+1=0`

`<=>6x-18=0`

`<=>x-3=0`

`<=>x=3`

`c,x(2x-4)-(x-2)(2x+3)=0`

`<=>2x(x-2)-(x-2)(2x+3)=0`

`<=>(x-2)(2x-2x-3)=0`

`<=>-3(x-2)=0`

`<=>x-2=0`

`<=>x=2`

`d,x(3x+2)+(x+1)^2-(2x-5)(2x+5)=-12`

`<=>3x^2+2x+x^2+2x+1-4x^2+25=-12`

`<=>4x+26=-12`

`<=>4x=-38`

`<=>x=-19/2`

13 tháng 9 2021

a)\(M=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)=6x^2+23x-55-6x^2-23x-21=-76\)

b) \(N=\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1=9\)

a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)

\(\Leftrightarrow6x-9+4-2x=-3\)

\(\Leftrightarrow4x=2\)

hay \(x=\dfrac{1}{2}\)

1 tháng 10 2021

giải phần còn lại giúp mình được ko?

a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)

\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)

\(\Leftrightarrow3x=3\)

hay x=1

Vậy: S={1}

b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)

\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)

\(\Leftrightarrow6x=-20\)

hay \(x=-\dfrac{10}{3}\)

c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)

\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)

\(\Leftrightarrow17x=17\)

hay x=1

25 tháng 12 2021

a: \(\Leftrightarrow\left(x+2\right)\left(12-x\right)=0\)

\(\Leftrightarrow x\in\left\{-2;12\right\}\)

b: \(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)

\(\Leftrightarrow x\in\left\{-\dfrac{5}{2};1\right\}\)

10 tháng 9 2021

\(a,\left(x+2\right)^2+\left(x+3\right)^2-2\left(x-2\right)\left(x-3\right)=19\\ \Leftrightarrow x^2+4x+4+x^2+6x+9-2x^2+10x-12=19\\ \Leftrightarrow20x=20\\ \Leftrightarrow x=1\\ b,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-5\right)=15\\ \Leftrightarrow x^3+8-x^3+5x=15\\ \Leftrightarrow5x=7\\ \Leftrightarrow x=\dfrac{7}{5}\\ c,\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\\ \Leftrightarrow x^3-3x^2+3x+1+8-x^3+3x^2+6x=17\\ \Leftrightarrow9x=8\\ \Leftrightarrow x=\dfrac{8}{9}\)

10 tháng 9 2021

a. (x + 2)2 + (x + 3)2 - 2(x - 2)(x - 3) = 19

<=> (x2 + 4x + 4) + (x2 + 6x + 9) - (2x + 4)(x - 3) = 19

<=> x2 + 4x + 4 + x2 + 6x + 9 - 2x2 + 6x - 4x + 12 = 19

<=> x2 + x2 - 2x2 + 4x + 6x + 6x - 4x + 9 + 4 + 12 - 19 = 0

<=> 12x + 6 = 0

<=> 6(2x + 1) = 0

<=> 2x + 1 = 0

<=> 2x = -1

<=> x = \(\dfrac{-1}{2}\)  

c: Ta có: \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)

\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)

\(\Leftrightarrow3x^2+26x=0\)

\(\Leftrightarrow x\left(3x+26\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)

23 tháng 9 2021

\(a,\Leftrightarrow x^2+8x+16-x^3-12x^2=16\\ \Leftrightarrow x^3+11x^2-8x=0\\ \Leftrightarrow x\left(x^2+11x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+11x-8=0\left(1\right)\end{matrix}\right.\\ \Delta\left(1\right)=121+32=153\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11-3\sqrt{17}}{2}\\x=\dfrac{-11+3\sqrt{17}}{2}\end{matrix}\right.\\ S=\left\{0;\dfrac{-11-3\sqrt{17}}{2};\dfrac{-11+3\sqrt{17}}{2}\right\}\)

\(c,\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\\ \Leftrightarrow3x^2+26x=0\\ \Leftrightarrow x\left(3x+26\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\\ d,\Leftrightarrow x^3-6x^2+12x-8-x^3-125-6x^2=11\\ \Leftrightarrow-12x^2+12x-144=0\\ \Leftrightarrow x^2-x+12=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)

30 tháng 10 2021

a) \(\Leftrightarrow x^2-4x-x^2+6x-9=0\\ \Leftrightarrow2x=9\\ \Leftrightarrow x=4,5\)

b) \(\Leftrightarrow x^2-3x-10=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(5x+10\right)=0\\ \Leftrightarrow x\left(x+2\right)-5\left(x+2\right)=0\\ \left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

c) \(\Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\\ \Leftrightarrow\left(2x-10\right)\left(2x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

d) \(\Leftrightarrow\left(2x+7\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)