Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
\(A\left(x\right)=x^2+3x+1\)
\(B\left(x\right)=2x^2-2x-3\)
a) Tính A(x) là sao em?
b) \(A\left(x\right)+B\left(x\right)=\left(x^2+3x+1\right)+\left(2x^2-2x-3\right)\)
\(=x^2+3x+1+2x^2-2x-3\)
\(=\left(x^2+2x^2\right)+\left(3x-2x\right)+\left(1-3\right)\)
\(=3x^2+x-2\)
Câu 1:
\(M\left(x\right)=x^3+3x-2x-x^3+2\)
\(=\left(x^3-x^3\right)+\left(3x-2x\right)+2\)
\(=x+2\)
Bậc của M(x) là 1
a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
⇔\(7\left(x-3\right)=5\left(x+5\right)\)
⇔\(7x-21=5x+25\)
⇔\(7x-21-5x-25=0\)
⇔\(2x-46=0\)
⇔\(2x=46\)
⇔\(x=23\)
P(x)=2x^4+2x^3-5x+3
Q(x)=4x^4-2x^3+2x^2+5x-2
P(x)+Q(x)
=2x^4+2x^3-5x+3+4x^4-2x^3+2x^2+5x-2
=6x^4+2x^2+1
a) Xét \(x\le\frac{3}{2}\) ta có : \(\left(3-2x\right)-x=\left(2-x\right)\)
\(\Leftrightarrow3-3x=2-x\Leftrightarrow-2x=-1\Rightarrow x=-\frac{1}{2}\left(TM\right)\)
Xét \(\frac{3}{2}\le x\le2\) ta có : \(\left(2x-3\right)-x=2-x\)
\(\Leftrightarrow x-3=2-x\Leftrightarrow2x=5\Rightarrow x=\frac{5}{2}\left(l\right)\)
Xét \(x\ge2\) ta có : \(\left(2x-3\right)-x=x-2\)
\(\Leftrightarrow x-3=x-2\Rightarrow-3=-2\left(l\right)\)
Vậy \(x=-\frac{5}{2}\)
b) \(VT=\left|x+3\right|+\left|x+1\right|\ge0\forall x\) nên \(VP=3x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+3\right|+\left|x+1\right|=x+3+x+1=2x+4\)
Ta có \(2x+4=3x\Rightarrow x=4\)
Vậy \(x=4\)
Mơn nha, Đinh Đức Hùng