Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
(x+4)(3x-5) = 0
=> x + 4 = 0 hoặc 3x-5 = 0
x = -4 x = 5/3
b)
2x2 + 7x + 3 = 0
2x2 + 6x + x + 3= 0
(2x+1)(x+3) = 0
=> 2x+1 = 0 hoặc x + 3 = 0
x = -1/2 x = -3
\(\left|3x+7\right|-\left|x-1\right|=0\)
\(\Leftrightarrow\left|3x-7\right|=\left|x-1\right|\)
\(\Rightarrow\orbr{\begin{cases}3x-7=x-1\\3x-7=1-x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=6\\4x=8\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)
2:
a: =>x-1=0 hoặc 3x+1=0
=>x=1 hoặc x=-1/3
b: =>x-5=0 hoặc 7-x=0
=>x=5 hoặc x=7
c: =>\(\left[{}\begin{matrix}x-1=0\\x+5=0\\3x-8=0\end{matrix}\right.\Leftrightarrow x\in\left\{1;-5;\dfrac{8}{3}\right\}\)
d: =>x=0 hoặc x^2-1=0
=>\(x\in\left\{0;1;-1\right\}\)
talaays đơn thức nhân với từng hạng tử của đa thức
rồi cộng tích lại với nhau
rồi tìm x
nha bn
Ta có : |2x - 5| + |4 + x| = 0
Mà : |2x - 5| \(\ge0\forall x\)
|4 + x| \(\ge0\forall x\)
Nên \(\orbr{\begin{cases}\left|2x-5\right|=0\\\left|4+x\right|=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\4+x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=5\\x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-4\end{cases}}\)
\(A=\frac{3x^2+8x+6}{x^2+2x+1}\) \(\left(x\ne\pm1\right)\)
\(A=\frac{\left(3x^2+6x+3\right)+\left(2x+3\right)}{\left(x+1\right)^2}\)
\(A=\frac{3\left(x+1\right)^2+2x+3}{\left(x+1\right)^2}\)
\(A=3+\frac{2x+3}{\left(x+1\right)^2}\)
Vì\(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow3+\frac{2x+3}{\left(x+1\right)^2}\ge3\Leftrightarrow A\ge3\)
Dấu "="xảy ra khi \(2x+3=0\Rightarrow x=\frac{-3}{2}\)
Gọi k là một giá trị của A ta có:
\(\frac{\left(3x^2-8x+6\right)}{\left(x^2+2x+1\right)}=k\)
\(\Leftrightarrow3x^2-8x+6=k\left(x^2-2x+1\right)\)
\(\Leftrightarrow\left(3-k\right)x^2-\left(8-2k\right)x+6-k=0\)(*)
Ta cần tìm k để PT (*) có nghiệm
Xét: \(\Delta=\left(8-2k\right)^2-4\left(3-k\right)\left(6-k\right)=64-32k+4k^2-4\left(18-9k+k^2\right)=4k-8\)
Để PT (*) có nghiệm thì: \(\Delta\ge0\Leftrightarrow4k-8\ge0\Leftrightarrow k\ge2\)
Dấu "=" xảy ra khi: \(-\left(8-2.2\right)x+6-2=0\Leftrightarrow-4x+4=0\Rightarrow x=1\)
Vậy: \(B\ge2\)suy ra: B = 2 khi x = 1