Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Bài 2:
a: \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
a, (3x-5)^2 - (x-1)^2 = 0
(3x-5-x+1)(3x-5+x-1) =0
(2x-4)(4x-6)=0
Do đó: 2x-4=0 hoặc 4x-6=0
Th1: 2x-4=0 => 2x=4
=> x=2
Th2: 4x-6=0 => 4x=6
=> x = 4/6 =2/3
Vậy x = 2 ; 2/3
Lời giải:
$\frac{2}{3}x(x^2-16)=0$
$\Leftrightarrow x=0$ hoặc $x^2-16=0$
$\Leftrightarrow x=0$ hoặc $(x-4)(x+4)=0$
$\Leftrightarrow x=0$ hoặc $x-4=0$ hoặc $x+4=0$
$\Leftrightarrow x=0$ hoặc $x=\pm 4$
Không có đáp án nào đúng.
\(a,\Leftrightarrow\dfrac{3x^3+6x^2-3x-5x^2-10x+5}{x^2+2x-1}=10\\ \Leftrightarrow\dfrac{3x\left(x^2+2x-1\right)-5\left(x^2+2x-1\right)}{x^2+2x-1}=10\\ \Leftrightarrow3x-5=10\Leftrightarrow3x=15\Leftrightarrow x=5\\ b,\Leftrightarrow\left(x^4+2x^2-4x^2-8\right):\left(x-2\right)=0\\ \Leftrightarrow\left[\left(x^2-4\right)\left(x^2+2\right)\right]:\left(x-2\right)=0\\ \Leftrightarrow\left[\left(x-2\right)\left(x+2\right)\left(x^2+2\right)\right]:\left(x-2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x^2+2\right)=0\Leftrightarrow x=-2\left(x^2+2>0\right)\\ c,\Leftrightarrow\dfrac{x\left(x-4\right)}{\left(x-4\right)^2}=0\Leftrightarrow\dfrac{x}{x-4}=0\Leftrightarrow x=0\)
a, \(x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
b,\(\left(3x-1\right)^2-16=0\Rightarrow\left(3x-1-4\right)\left(3x-1+4\right)\)
\(\Rightarrow\left(3x-5\right)\left(3x+3\right)=0\Rightarrow\orbr{\begin{cases}3x-5=0\\3x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}}\)
\(x^2-2x=0\Leftrightarrow x.\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=0+2=2\end{cases}}}.\)
\(\left(3x-1\right)^2-16=0\)
\(\Leftrightarrow\left(3x-1\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=4\\3x-1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=4+1=5\\3x=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}}}\)
a) Thực hiện rút gọn VT = -2x – 64
Giải phương trình -2x – 64 = 0 thu được x = -32.
b) Thực hiện rút gọn VT = -62 x +12
Giải phương trình -62x + 12 = -50 thu được x = 1.
Trả lời:
a, ( x2 - 4x + 16 )( x + 4 ) - x ( x + 1 )( x + 2 ) + 3x2 = 0
<=> x3 + 4x2 - 4x2 - 16x + 16x + 64 - x ( x2 + 3x + 2 ) + 3x2 = 0
<=> x3 + 64 - x3 - 3x2 - 2x + 3x2 = 0
<=> 64 - 2x = 0
<=> 2x = 64
<=> x = 32
Vậy x = 32 là nghiệm của pt.
b, ( 8x + 2 )( 1 - 3x ) + ( 6x - 1 )( 4x - 10 ) = - 50
<=> 8x - 24x2 + 2 - 6x + 24x2 - 60x - 4x + 10 = - 50
<=> - 62x + 12 = - 50
<=> - 62x = - 62
<=> x = 1
Vậy x = 1 là nghiệm của pt.
\(\left\{{}\begin{matrix}x-16=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=16\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left(x-16\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-16=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=16\\x=\dfrac{1}{3}\end{matrix}\right.\)