Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 4x - 15 = ( -75 ) - x
<=> 4x +x = -75 + 15
<=> 5x = -60
<=> x = -12
b, 72 - 3x = 5x +8
<=> 72 - 8 = 5x + 3x
<=> 8x = 64
<=> x = 8
c, 3.|x-7| = 21
* Nếu x - 7 \(\ge\)0 <=> x \(\ge\)7 thì
PT <=> 3 .( x- 7 ) = 21
<=> x - 7 = 7
<=> x = 14 ( tm )
* Nếu x < 7 <=> x < 7 thì
PT <=> 3. [ - ( x- 7 ) ] = 21
<=> -x +7 = 7
<=> -x = 0
<=> x = 0 ( tm )
d, \(-7.|x+3|=-49\).
\(\Leftrightarrow|x+3|=7\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=7\\x+3=-7\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-10\end{cases}}}\)
e, c-12.(x-5)+7.(3-x)=5
<=> -12x + 60 + 21 - 7x = 5
<=> -19x + 81 = 5
<=> -19x = -76
<=> x = 4
1. Rút gọn biểu thức :
\(M=4.\left(2-3x\right)-\left|2x-3\right|\) (*)
- Xét 2 TH :
+ Trường hợp 1 : \(\left|2x-3\right|=\left(2x-3\right)\) thì (*) trở thành :
\(M=4.\left(2-3x\right)-\left(2x-3\right)\)
\(\Rightarrow M=8-12x-2x+3\)
\(\Rightarrow M=-14x+11\)
+ Trường hợp 2 : \(\left|2x-3\right|=\left(3-2x\right)\) thì (*) trở thành :
\(M=4.\left(2-3x\right)-\left(3-2x\right)\)
\(\Rightarrow M=8-12x-3+2x\)
\(\Rightarrow M=-10x+5\)
a \ |x-2|+|x-5|=5x
==> x - 2 + x - 5=5x
x + x - 2 - 5 =5x
2x - 7 =5x
2x : x -7=5
x-7=5
x=5+7
x=12[22222222222222222222222222222222222222222 =]]]
hoac -(x-2)-(x-5)=5
-x+2-x+5=5
-x-x+2+5=5x
-2x+7=5x
-2x:x+7=5
-x+7=5
-x=5-7
-x=-2
==> x=2
vay x=12 hoac x=2
hinh nhu t sai cho nao do ;{
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
\(a,\frac{1}{3}x+0.25=\frac{5}{7}\)
\(\Leftrightarrow\frac{1}{3}x=\frac{13}{28}\)
\(\Leftrightarrow x=\frac{39}{28}\)
vậy...
\(b,\frac{11}{12}x+0,25=\frac{5}{6}\)
\(\Leftrightarrow\frac{11}{12}x=\frac{7}{12}\)
\(\Leftrightarrow x=\frac{7}{11}\)
vậy.....
\(c,\left(\frac{-1}{3}\right)^2+\frac{2}{3}x=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{9}+\frac{2}{3}x=\frac{1}{4}\)
\(\Leftrightarrow\frac{2}{3}x=\frac{5}{36}\)
\(\Leftrightarrow x=\frac{5}{24}\)
vậy......
\(d,\left(3x+2\right)^3=-\frac{8}{125}\)
\(\Leftrightarrow3x+2=-\frac{2}{5}\)
\(\Leftrightarrow3x=-\frac{12}{5}\)
\(\Leftrightarrow x=-\frac{4}{5}\)
vậy.......
\(\frac{1}{3x}+0,25=\frac{5}{7}\)
\(\frac{1}{3x}+\frac{1}{4}=\frac{5}{7}\)
\(\frac{1}{3x}=\frac{13}{28}\)
\(3x=\frac{28}{13}\)
\(x=\frac{28}{39}\)
\(\frac{11}{12x}+0,25=\frac{5}{6}\)
\(\frac{11}{12x}+\frac{1}{4}=\frac{5}{6}\)
\(\frac{11}{12x}=\frac{7}{12}\)
\(x=\frac{11}{12}:\frac{7}{12}\)
\(x=\frac{7}{11}\)
\(\left(-\frac{1}{3}\right)^2+\frac{2}{3x}=\frac{1}{4}\)
\(\frac{1}{9}+\frac{2}{3x}=\frac{1}{4}\)
\(\frac{2}{3x}=\frac{5}{36}\)
\(x=\frac{2}{3}:\frac{5}{36}\)
\(x=\frac{5}{24}\)
\(\left(3x+2\right)^3=\left(-\frac{8}{125}\right)\)
\(\left(3x+2\right)^3=\left(-\frac{2}{5}\right)^3\)
\(\Rightarrow3x+2=-\frac{2}{3}\)
\(3x=-\frac{8}{3}\)
\(x=-\frac{9}{8}\)
a)\(\left(4x+1\right)\left(x-3\right)-\left(x-7\right)\left(4x-1\right)=15\)
\(4x^2-11x-3-\left(4x^2-29x+7\right)=15\)
\(4x^2-11x-3-4x^2+29x-7=15\)
\(18x-10=15\)
\(x=\frac{25}{18}\)
b)\(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\left(x+1\right)\left(3x-5-3x+1\right)=x-4\)
\(\left(x+1\right).\left(-4\right)-x+4=0\)
\(-4x-4-x+4=0\)
\(x=0\)
\(\left|2x-\frac{1}{2}\right|+1=3x\)
\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=3x-1\)
\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{1}{2}=3x-1\\2x-\frac{1}{2}=1-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1+\frac{1}{2}\\2x+3x=1+\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-\frac{1}{2}\\5x=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{10}\end{cases}}\)
\(\left(3x-5\right)^8=\frac{1}{125}\left(5-3x\right)^{11}\)
\(\Leftrightarrow-\left(3x-5\right)^8=-\frac{1}{125}\left(3x-5\right)^{11}\)
\(\Leftrightarrow-1=-\frac{1}{125}\left(3x-5\right)^3\)
\(\Leftrightarrow\frac{1}{125}\left(3x+5\right)^3=1\)
\(\Leftrightarrow\left(3x-5\right)^3=125\)
\(\Leftrightarrow3x-5=\sqrt[3]{125}\)
\(\Leftrightarrow3x-5=5\)
\(\Leftrightarrow3x=10\)
\(\Leftrightarrow x=\frac{10}{3}\)
Vậy phương trình đã cho có tập nghiệm \(S=\left\{\frac{10}{3}\right\}\)