Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(M\ge\left|x-1+3-x\right|=\left|2\right|=2\)
Dấu " = " xảy ra khi \(x-1\ge0;3-x\ge0\)
\(\Rightarrow x\ge1;x\le3\)
\(\Rightarrow1\le x\le3\)
Vậy \(MIN_M=2\) khi \(1\le x\le3\)
(3x-4-x-1)(3x-4+x+1)=0
(2x-5)(4x-3)=0
2x-5 = 0 hoặc 4x-3=0
2x=5 hoặc 4x=3
x=5/2 hoặc x=3/4
x/6 + x/12 + x/7 + 5 + x/2 +4 = x
=> x/6 + x/12 + x/7 + x/2 - x = -5 - 4
=> x.(1/6 + 1/12 + 1/7 + 1/2 - 1) = -9
=> x. (-3/28) = -9
=> x = 84. Vậy x = 84
(35.5-2.5):x=15
33 :x=15
x=33:15
x=2.2
35,5 : x - 2,5 : x = 15
(35,5-2,5) : x = 15
33 : x = 15
x = 33 : 15
x = \(\frac{33}{15}\)