Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x\left(x-2\right)-x+2=0\)
\(\Leftrightarrow3x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\3x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}\)
Do x>y>0 nên x+y\(\ne0\)
Ta có \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\) (1)
Mặt khác ,do x,y>0 nên \(x^2+2xy+y^2>x^2+y^2\)
Vậy: \(\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+y^2}\) (2)
Từ (1),(2) ta suy ra : \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
\(x^2+3x+2\) =\(x^2+2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\frac{5}{4}\)=\(\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu "=" xảy ra <=>\(x+\frac{3}{2}=0\)<=>\(x=-\frac{3}{2}\)
Bài 2:
a) \(x^2-4x+y^2+2y+5=0\)
=> \(\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
=>\(\left(x-2\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\)nên:
=>\(\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
b)\(2x^2+y^2-2xy+10x+25=0\)
=>\(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)=0\)
=>\(\left(x-y\right)^2+\left(x+5\right)^2=0\)
Tới đây thì dễ nhá !
\(8x^3+12x^2+6x+1=0.\)
\(\Leftrightarrow8x^2\left(x+\frac{1}{2}\right)+8x\left(x+\frac{1}{2}\right)+2\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(8x^2+8x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\2\left(4x^2+4x+1\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\2\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\end{cases}}\)
Vậy pt có 1 No là...
\(2\left(x+5\right)-x^2-5x=0.\)
\(\Leftrightarrow2x+10-x^2-5x=0\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}}\)
Để bpt trên >0
=> x+5>0 và 3x-12>0
<=>x>-5 và x>4
=>x>4
Hoặc
x+5<0 và 3x-12<0
<=>x<-5 và x<4
=>x<-5
Vậy để bpt trên >0 thì x>4 hoặc x<-5
1/ 0, 71
2/ Tương tự 2 câu 1, 3 nhé!
3/ 11,25
Tick đúng nha! Thanks!
a. \(\left(3x-5\right)^2-\left(x+1\right)^2=0\Leftrightarrow\left(3x-5+x+1\right)\left(3x-5-x-1\right)=0\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\2x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy ...
b. \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
c. \(4x^3-36x=0\Leftrightarrow4x\left(x^2-9\right)=0\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ...
d. \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-2x+3\right)=0\Leftrightarrow6\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy ...
2x2 + 3x - 2 = 0
=> 2x2 - x + 4x - 2 = 0
=> x.(2x - 1) + 2.(2x - 1) = 0
=> (2x - 1).(x + 2) = 0
=> 2x - 1 = 0 hoặc x + 2 = 0
=> 2x = 1 hoặc x = -2
=> x = 1/2 hoặc x = -2
\(2x^2+3x-2=0\Rightarrow2x^2+4x-x-2=0\Rightarrow2x\left(x+2\right)-\left(x+2\right)=0\Rightarrow\left(2x-1\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\x+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0.5\\x=-2\end{cases}}\)