Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(2x^3-50x=0\Leftrightarrow2x\left(x^2-25\right)=0\Leftrightarrow x=0;x=\pm5\)
2, \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[5\left(x+1\right)-4\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+9\right)=0\Leftrightarrow x=-9;x=1\)
3, \(6x\left(x-2\right)=x-2\Leftrightarrow\left(6x-1\right)\left(x-2\right)=0\Leftrightarrow x=\frac{1}{6};x=2\)
4, \(7\left(x-2020\right)^2-x+2020=0\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)
\(\Leftrightarrow\left(x-2020\right)\left[7\left(x-2020\right)-1\right]=0\Leftrightarrow x=2020;x=\frac{14141}{7}\)
5, \(x^2-10x=-25\Leftrightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)
6, \(x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow x=-1;x=3\)
\(1,\)
\(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
\(2,\)
\(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow x^2-x+9x-9=0\)
\(\Leftrightarrow x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)
\(3,\)
\(6x\left(x-2\right)=x-2\)
\(\Leftrightarrow6x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{6}\end{cases}}\)
\(4,\)
\(7\left(x-2020\right)^2-x+2020=0\)
\(\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)
\(\Leftrightarrow\left(x-2020\right)[7\left(x-2020\right)-1]=0\)
\(\Leftrightarrow\left(x-2020\right)[7x-14141]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\7x=14141\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=\frac{14141}{7}\end{cases}}\)
\(5,\)
\(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
\(6,\)
\(x^2-2x-3=0\)
\(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
b) \(x^3+6x^2+9x=0\)
\(\Leftrightarrow x^3+3x^2+3x^2+9x=0\)
\(\Leftrightarrow x^2\left(x+3\right)+3x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+3x\right)=0\)
\(\Leftrightarrow\left(x+3\right)x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)^2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+3\right)^2=0\\x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=0\end{cases}}}\)
Vậy \(x\in\left\{-3;0\right\}\)
a) \(2x\left(x-2\right)+x^2=4\)
\(\Leftrightarrow2x\left(x-2\right)+x^2-4=0\)
\(\Leftrightarrow2x\left(x-2\right)+\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}}\)
Vậy \(x\in\left\{\frac{-2}{3};2\right\}\)
\(a,\Rightarrow x^2+4x+4+x^2-2x+1+x^2-9-3x^2=-8\\ \Rightarrow2x=-4\\ \Rightarrow x=-2\\ b,\Rightarrow2021x\left(x-2020\right)-\left(x-2020\right)=0\\ \Rightarrow\left(2021x-1\right)\left(x-2020\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2020=0\\2021x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2021}\end{matrix}\right.\)
a) \(\Rightarrow x^2+4x+4+x^2-2x+1+x^2-9-3x^2=-8\)
\(\Rightarrow2x=-4\Rightarrow x=-2\)
b) \(\Rightarrow2021x\left(x-2020\right)-\left(x-2020\right)=0\)
\(\Rightarrow\left(x-2020\right)\left(2021x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2021}\end{matrix}\right.\)
1: =>x^2+4x-21=0
=>(x+7)(x-3)=0
=>x=3 hoặc x=-7
2: =>(2x-5-4)(2x-5+4)=0
=>(2x-9)(2x-1)=0
=>x=9/2 hoặc x=1/2
3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15
=>-9x^2+27x+9x^2+18x+9=15
=>18x=15-9-27=-21
=>x=-7/6
6: =>4x^2+4x+1-4x^2-16x-16=9
=>-12x-15=9
=>-12x=24
=>x=-2
7: =>x^2+6x+9-x^2-4x+32=1
=>2x+41=1
=>2x=-40
=>x=-20
Bài 1:
\(a,=6x^2+19x-7-6x^3-4x^2+7x=-6x^3+2x^2+26x-7\\ b,B=26\cdot\left(63^2+63\cdot37+37^2\right):26+63\cdot37\\ =63^2+63\cdot37+37^2+63\cdot37\\ =\left(63+37\right)^2=100^2=10000\)
Bài 2:
\(a,=x\left(y^2-25\right)=x\left(y-5\right)\left(y+5\right)\\ b,=\left(x-y\right)\left(x+2\right)\\ c,=\left(x-3\right)\left(x^2-4\right)=\left(x-2\right)\left(x-3\right)\left(x+2\right)\)
\(3x\left(x-2020\right)-x+2020=0\)
\(3x\left(x-2020\right)-\left(x-2020\right)=0\)
\(\left(3x-1\right)\left(x-2020\right)=0\)
\(\orbr{\begin{cases}x=\frac{1}{3}\left(TM\right)\\x=2020\left(TM\right)\end{cases}}\)
\(b,4-9x^2=0\)
\(2^2-\left(3x\right)^2=0\)
\(\left(2-3x\right)\left(2+3x\right)=0\)
\(\orbr{\begin{cases}2-3x=0\\2+3x=0\end{cases}\orbr{\begin{cases}x=\frac{2}{3}\left(TM\right)\\x=-\frac{2}{3}\left(TM\right)\end{cases}}}\)
\(c,x^2-x+\frac{1}{4}=0\)
\(x^2-x+\left(\frac{1}{2}\right)^2=0\)
\(\left(x-\frac{1}{2}\right)^2=0\)
\(x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)
\(d,x\left(x-3\right)+\left(x-3\right)=0\)
\(\left(x-3\right)\left(x+1\right)=0\)
\(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\orbr{\begin{cases}x=3\left(TM\right)\\x=-1\left(TM\right)\end{cases}}}\)
\(e,9x\left(x-7\right)-x+7=0\)
\(9x\left(x-7\right)-\left(x-7\right)=0\)
\(\left(9x-1\right)\left(x-7\right)=0\)
\(\orbr{\begin{cases}9x-1=0\\x-7=0\end{cases}\orbr{\begin{cases}x=\frac{1}{9}\left(TM\right)\\x=7\left(TM\right)\end{cases}}}\)
a) 3x(x - 2020) - x + 2020 = 0
<=> 3x(x - 2020) - (x - 2020) = 0
<=> (3x - 1)(x - 2020) = 0
<=> \(\orbr{\begin{cases}3x-1=0\\x-2020=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2020\end{cases}}\)
Vậy tập nghiệm phương trình là \(S=\left\{\frac{1}{3};2020\right\}\)
b) \(4-9x^2=0\)
<=> \(\left(2-3x\right)\left(2+3x\right)=0\)
<=> \(\orbr{\begin{cases}2-3x=0\\2+3x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{2}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{2}{3};-\frac{2}{3}\right\}\)là nghiệm phương trình
c) \(x^2-x+\frac{1}{4}=0\)
<=> \(\left(x-\frac{1}{2}\right)^2=0\)
<=> \(x-\frac{1}{2}=0\)
<=> \(x=\frac{1}{2}\)
d) x(x - 3) + (x - 3) = 0
<=> (x + 1)(x - 3) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vậy \(x\in\left\{-1;3\right\}\)là nghiệm phương trình
e) 9x(x - 7) - x + 7 = 0
<=> (9x - 1)(x - 7) = 0
<=> \(\orbr{\begin{cases}9x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{9}\\x=7\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{9};7\right\}\)là nghiệm phương trình