Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: a/b=b/c=c/a chứ không phải c/d
áp dụng tính chất dãy tỉ số bằng nhau, ta có:
a/b=b/c=c/a=(a+b+c)/(b+c+a)=1
a/b=1 => a=b
b/c=1 => b=c
Vậy a=b=c
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
1.
$(3^2-2^3)x+3^2.2^2=4^2.3$
$\Leftrightarrow x+36=48$
$\Leftrightarrow x=48-36=12$
2.
$x^5-x^3=0$
$\Leftrightarrow x^3(x^2-1)=0$
$\Leftrightarrow x^3(x-1)(x+1)=0$
$\Leftrightarrow x^3=0$ hoặc $x-1=0$ hoặc $x+1=0$
$\Leftrightarrow x=0$ hoặc $x=\pm 1$
3.
$(x-1)^2+(-3)^2=5^2(-1)^{100}$
$\Leftrightarrow (x-1)^2+9=25$
$\Leftrightarrow (x-1)^2=25-9=16=4^2=(-4)^2$
$\Rightarrow x-1=4$ hoặc $x-1=-4$
$\Leftrightarrow x=5$ hoặc $x=-3$
4.
$(2x-1)^2-(2x-1)=0$
$\Leftrightarrow (2x-1)(2x-1-1)=0$
$\Leftrightarrow (2x-1)(2x-2)=0$
$\Leftrightarrow 2x-1=0$ hoặc $2x-2=0$
$\Leftrightarrow x=\frac{1}{2}$ hoặc $x=1$
$\Lef
`@` `\text {Ans}`
`\downarrow`
\((3^2-2^3)x+3^2.2^2=4^2.3\)
`=> x + (3*2)^2 = 48`
`=> x+6^2 = 48`
`=> x + 36 = 48`
`=> x = 48 - 36`
`=> x=12`
Vậy, `x=12`
\(x^5-x^3=0\)
`=> x^3(x^2 - 1)=0`
`=>`\(\left[{}\begin{matrix}x^3=0\\x^2-1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x^2=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)
Vậy, `x \in {0; +- 1 }`
\(\left(x-1\right)^2+\left(-3\right)^2=5^2\cdot\left(-1\right)^{100}\)
`=> (x-1)^2 + 9 = 25*1`
`=> (x-1)^2 + 9 = 25`
`=> (x-1)^2 = 25 - 9`
`=> (x-1)^2 = 16`
`=> (x-1)^2 = (+-4)^2`
`=>`\(\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4+1\\x=-4+1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy, `x \in {5; -3}`
\((2x-1)^2-(2x-1)=0\)
`=> (2x-1)(2x-1) - (2x-1)=0`
`=> (2x-1)(2x-1-1)=0`
`=>`\(\left[{}\begin{matrix}2x-1=0\\2x-2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=1\\2x=2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
Vậy, `x \in {1; 1/2}`
1)
a)|17x-5|-|17x+5|=0
17x-5=0 hoặc 17x+5=0
17x=0+5 17x=0-5
17x=5 17x=-5
x=5:17 x=-5:17
x=5/17 x=-5/17
a) \(|x+\frac{3}{4}|+|y-\frac{1}{5}|+|x+y+z|=0\)
\(\Rightarrow|x+\frac{3}{4}|=|y-\frac{1}{5}|=|x+y+z|=0\)
\(\Rightarrow|x+\frac{3}{4}|=0\) \(\Rightarrow|y-\frac{1}{5}|=0\) \(\Rightarrow|x+y+z|=0\)
\(\Rightarrow x+\frac{3}{4}=0\) \(\Rightarrow y-\frac{1}{5}=0\) \(\Rightarrow x+y+z=0\)
\(x=\frac{-3}{4}\) \(y=\frac{1}{5}\) thay x=-3/4; y=1/5 vào biểu thức trên
ta có \(\frac{-3}{4}+\frac{1}{5}+z=0\)
\(z=0-\frac{-3}{4}-\frac{1}{5}\)
VẬY X=-3/4; Y=1/5; Z=11/20
B) \(|3x-4|+\left|3y-5\right|=0\)
\(\Rightarrow\left|3x-4\right|=\left|3y-5\right|=0\)
\(\Rightarrow\left|3x-4\right|=0\) \(\Rightarrow\left|3y-5\right|=0\)
\(3x-4=0\) \(3y-5=0\)
\(3x=4\) \(3y=5\)
\(x=\frac{4}{3}\) \(y=\frac{5}{3}\)
VẬY X= 4/3; Y=5/3
C) \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|< 0\)
ĐỂ \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|< 0\)
\(\Rightarrow\left|x+\frac{3}{4}\right|;\left|y-\frac{2}{5}\right|;\left|z+\frac{1}{2}\right|< 0\)
MÀ GIÁ TRỊ TUYỆT ĐỐI LUÔN MANG SỐ NGUYÊN DƯƠNG
\(\Rightarrow x;y;z\in\varnothing\)
d) \(\left|x+\frac{1}{5}\right|+\left|3-y\right|=0\)
\(\Rightarrow\left|x+\frac{1}{5}\right|=\left|3-y\right|=0\)
\(\Rightarrow\left|x+\frac{1}{5}\right|=0\) \(\Rightarrow\left|3-y\right|=0\)
\(x+\frac{1}{5}=0\) \(3-y=0\)
\(x=\frac{-1}{5}\) \(y=3\)
VẬY X= -1/5; Y=3
CHÚC BN HỌC TỐT!!!!!!!
Ta có :
\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+\frac{3}{4}=0\\y-\frac{1}{5}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=0-\frac{-3}{4}-\frac{1}{5}\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=\frac{11}{20}\end{cases}}\)
Vậy \(x=\frac{-3}{4};y=\frac{1}{5};z=\frac{11}{20}\)