Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-42) - 17 = 127
=> x - 42 = 127 + 17 = 144
=> x = 144 + 42 = 186
23(x+1) = 69
=> x + 1 = 69 : 23 = 3
x = 3 - 1 = 2
2x + 5 = 120 : 2 = 60
=> 2x = 60 - 5 = 55
x = 55 : 2 = 27,5
5x - 2 = 613
=> 5x = 613 + 2 = 615
x = 615 : 5 = 123
a)(x-42)-17=127
(x-42)=127+17
(x-42)=144
x=144+42
x=186
b)23(x+1)=69
(x+1)=69:23
(x+1)=3
x=3-1
x=2
c)2.x+5=120:2
2.x+5=60
2.x=60-5
2.x=55
x=55:2
x=27,5
d)5.x-2=613
5.x=613+2
5.x=615
x=615:5
x=123
Bài 1:
Ta có: \(4-2\left(x+1\right)=2\)
\(\Leftrightarrow2\left(x+1\right)=2\)
\(\Leftrightarrow x+1=1\)
hay x=0
Bài 2:
Ta có: \(\left|2x-3\right|-1=2\)
\(\Leftrightarrow\left|2x-3\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
Lời giải:
a. Để $B$ là phân số thì $x+3\neq 0\Leftrightarrow x\neq -3$
b. Để $B$ nhận giá trị nguyên thì $x+3$ là ước của $7$
$\Rightarrow x+3\in\left\{1;-1;7;-7\right\}$
$\Rightarrow x\in\left\{-2; -4; 4; -10\right\}$
c. Để $B< 0$ thì $7$ và $x+3$ trái dấu nhau. Mà $7>0$ nên $x+3<0$
$\Leftrightarrow x<-3$
d. Để $B$ đạt giá trị lớn nhất thì $x+3$ là số dương nhỏ nhất.
Với $x$ nguyên, $x+3$ dương nhỏ nhất bằng $1$
Khi đó: $B_{\max}=\frac{7}{1}=7$. Giá trị này đạt tại $x+3=1$ hay $x=-2$
\(\dfrac{2x-3}{5}=\dfrac{-5}{3-2x}\) ĐK `3-2x≠0<=>x≠3/2`
\(\Leftrightarrow\dfrac{\left(2x-3\right)\left(3-2x\right)}{5\left(3-2x\right)}=\dfrac{-5.5}{5\left(3-2x\right)}\)
`=> (2x-3)(3-2x)=-25`
`<=>6x-4x^2-9+6x=-25`
`<=> -4x^2 +12x=-25+9`
`<=> -4x^2 +12x+16=0`
`<=> -4(x-4)(x+1)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
vậy phương trình có tập nghiệm \(S=\left\{4;-1\right\}\)
ĐK là gì thế bn