Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa vào tỉ số bằng nhau ta đc:
a)\(3x-2y=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đc:
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{16}{-1}=-16\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-16\\\frac{y}{3}=-16\end{cases}\Rightarrow}\hept{\begin{cases}x=-32\\y=-48\end{cases}}\)
Các câu kia tg tự nha
c)
\(\frac{4}{x}=\frac{6}{y}=\frac{x}{6}=\frac{y}{4}\) và x + y = 5
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{6}=\frac{y}{4}\Rightarrow\frac{x+y}{6+4}=\frac{5}{10}=\frac{1}{2}\)
\(\frac{x}{6}=\frac{1}{2}\Rightarrow x=\frac{1.6}{2}=3\)
\(\frac{y}{4}=\frac{1}{2}\Rightarrow y=\frac{1.4}{2}=2\)
Vậy...
a) x:y:z:t=2:3:4:5
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)
Áp dụng tính ... , ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\)
\(\Rightarrow x=-6;y=-9;z=-12;t=-15\)
b) c ) tương tự
\(x:y:z:t=2:3:4:5\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)
áp dụng tính chất dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\)
\(\frac{x}{2}=-3\Rightarrow x=-6\)
\(\frac{y}{3}=-3\Rightarrow y=-9\)
\(\frac{z}{4}=-3\Rightarrow z=-12\)
\(\frac{t}{5}=-3\Rightarrow t=-15\)
Theo đề ta có:
x : y : z : t = 2 : 3 :4 : 5 và x + y +z +t = -42
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}=\dfrac{x+y+z+t}{2+3+4+5}=-\dfrac{42}{14}=-3\)
=> \(\dfrac{x}{2}=-3\Rightarrow x=-6\)
=>\(\dfrac{y}{3}=-3\Rightarrow y=-9\)
=>\(\dfrac{z}{4}=-3\) =>z= -12
=>\(\dfrac{t}{5}=-3\)=> t=-15
Theo đề bài, ta có:
\(x:y:z:t=2:3:4:5\)
⇒\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}\) và x+y+z+t=-42
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}=\dfrac{x+y+z+t}{2+3+4+5}=\dfrac{-42}{14}=-3\)
Vậy: \(x=2.\left(-3\right)=-6;y=3.\left(-3\right)=-9;z=4.\left(-3\right)=-12;t=5.\left(-3\right)=-15\)
Tick cho Phong nhé:>
Yêu nhiều>3
#Phong_419
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-1}{30+60-28}=\dfrac{186}{62}=3\)
\(\dfrac{x}{15}=3\Rightarrow x=45\\ \dfrac{y}{20}=3\Rightarrow y=60\\ \dfrac{z}{28}=3\Rightarrow x=84\)
b) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-20}{-4}=5\)
\(\dfrac{x}{2}=5\Rightarrow x=10\\ \dfrac{y}{3}=5\Rightarrow y=15\\ \dfrac{z}{4}=5\Rightarrow z=20\)
c) x : y :z : t = 3 : 4 : 5 :6\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{t}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{t}{6}=\dfrac{x+y+z+t}{3+4+5+6}=\dfrac{3,6}{18}=\dfrac{1}{5}\)
\(\dfrac{x}{3}=\dfrac{1}{5}\Rightarrow x=\dfrac{3}{5}\\ \dfrac{y}{4}=\dfrac{1}{5}\Rightarrow y=\dfrac{4}{5}\\ \dfrac{z}{5}=\dfrac{1}{5}\Rightarrow z=1\\ \dfrac{t}{6}=\dfrac{1}{5}\Rightarrow t=\dfrac{6}{5}\)
d) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\)
\(\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=-\dfrac{49}{7}=-7\)
\(\dfrac{x}{10}=-7\Rightarrow x=-70\\ \dfrac{y}{15}=-7\Rightarrow y=-105\\ \dfrac{z}{12}=-7\Rightarrow z=-84\)
e) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x^2-y^2+2z^2}{4-9+32}=\dfrac{108}{27}=4\)
\(\dfrac{x}{2}=4\Rightarrow x=8\\ \dfrac{y}{3}=4\Rightarrow y=12\\ \dfrac{z}{4}=4\Rightarrow z=16\)
x : y : z : t = 2 : 3 : 4 : 5
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{2}{7}\)
\(\Rightarrow x=\frac{2}{7}.2=\frac{4}{7};y=\frac{2}{7}.3=\frac{6}{7};z=\frac{2}{7}.4=\frac{8}{7};t=\frac{2}{7}.5=\frac{10}{7}\)
Ta có: \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{49}{7}=7\)
\(\Rightarrow x=7.10=70;y=7.15=105;z=7.12=84\)
Áp dụng tính chất của dãy tỉ só bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}=\dfrac{x+y+z+t}{2+3+4+5}=\dfrac{-42}{14}=-3\)
Do đó: x=-6; y=-9; z=-12; t=-15
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}=\dfrac{x+y+z+t}{2+3+4+5}=\dfrac{-42}{14}=-3\\ \Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\\z=-12\\t=-16\end{matrix}\right.\)