Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiacopski ta có:
\(\frac{x}{x^3+y^2+z}=\frac{x\left(\frac{1}{x}+1+z\right)}{\left(x^3+y^2+z\right)\left(\frac{1}{x}+1+z\right)}\le\frac{1+x+xz}{\left(x+y+z\right)^2}=\frac{1+x+xz}{9}\)
Tương tự rồi cộng lại ta được:
\(T\le\frac{3+x+y+z+xy+yz+zx}{9}=\frac{6+xy+yz+zx}{9}\le\frac{6+\frac{\left(x+y+z\right)^2}{3}}{9}=1\)
Dấu "=" xảy ra tại \(x=y=z=1\)
\(Q=\Sigma\frac{x^2}{xy^2z}+\frac{x^5}{y}+\frac{y^5}{z}+\frac{z^5}{x}\ge\frac{\left(x+y+z\right)^2}{xyz\left(x+y+z\right)}+4\sqrt[4]{\frac{x^5y^5z^5}{xyz}.\frac{1}{16}}-\frac{1}{16}\)
\(=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+2xyz-\frac{1}{16}=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+32xyz+32xyz-62xyz-\frac{1}{16}\)
\(\ge5\sqrt[5]{\frac{1}{\left(xyz\right)^2}.32^2\left(xyz\right)^2}-\frac{62}{27}\left(x+y+z\right)^3-\frac{1}{16}=20-\frac{31}{4}-\frac{1}{16}=\frac{195}{16}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
Cho x,y,z dương và x+y+z=3. Tìm GTNN của \(A=\frac{3+x^2}{y+z}+\frac{3+y^2}{z+x}+\frac{3+z^2}{x+y}\)
:(
\(A=\frac{3+x^2}{y+z}+\frac{3+y^2}{z+x}+\frac{3+z^2}{x+y}\)
\(=3\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)+\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)\)
\(\ge3\cdot\frac{9}{2\left(x+y+z\right)}+\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}\)
\(=\frac{27}{2\cdot3}+\frac{3}{2}=6\)
Đẳng thức xảy ra tại x=y=z=1
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
Áp dụng bđt cosi ta có
\(\frac{x^3}{y^2+z}+\frac{9}{25}x\left(y^2+z\right)\ge\frac{6}{5}x^2\)
................................................................,,,,
=>\(VT\ge\frac{6}{5}\left(x^2+y^2+z^2\right)-\frac{9}{25}\left(xy^2+yz^2+zx^2+xy+yz+xz\right)\)
Ta có \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)=\left(x^3+xz^2\right)+\left(y^3+yx^2\right)+\left(z^3+zy^2\right)+x^2z+y^2x+z^2y\)
\(\ge3\left(xy^2+yz^2+zx^2\right)\)
=> \(xy^2+yz^2+zx^2\le\frac{2}{3}\left(x^2+y^2+z^2\right)\)
Lại có \(xy+yz+xz\le x^2+y^2+z^2\)
Khi đó
\(VT\ge\frac{6}{5}\left(x^2+...\right)-\frac{9}{25}\left(\frac{5}{3}\left(x^2+y^2+z^2\right)\right)=\frac{3}{5}\left(x^2+y^2+z^2\right)\ge\frac{\left(x+y+z\right)^2}{5}=\frac{4}{5}\)
Vậy MinA=4/5 khi x=y=z=2/3
\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)
Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)
tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)
=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)
Dấu "=" xảy ra khi x=y=z=4
Vậy minM=6 khi x=y=z=4
Ta có \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)
\(\Rightarrow\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z\ge\frac{x+y+z}{2}+x+y+z\)
\(\Rightarrow x\left(\frac{x}{y+z}+1\right)+y\left(\frac{y}{x+z}+1\right)+z\left(\frac{z}{x+y}+1\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Rightarrow x\left(\frac{x+y+z}{y+z}\right)+y\left(\frac{y+x+z}{x+z}\right)+z\left(\frac{z+x+y}{x+y}\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\) (Theo BĐT Nesbitt )
\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\) (đpcm)
Tham khảo nhé:
https://olm.vn/hoi-dap/detail/98915782166.html
Hok tốt~
Dễ thấy nếu \(x=0\)thì\(y=z=0,\Leftrightarrow x=y=z=0\)là 1 bộ giá trị phải tìm.
Gỉa sử x, y và z \(\ne\)0 thì theo đề bài ra \(x+y+z\ne0\). Sử dụng tính chất dãy số bằng nhau, ta có:
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
Thay kết quả vào dãy tỉ số ban đầu, ta được : \(x=-\frac{1}{2};y=-\frac{5}{6};z=\frac{11}{6}.\)
Vậy ta có : \(x=y=z=0\)hoặc \(x=-\frac{1}{2};y=-\frac{5}{6};z=\frac{11}{6}.\)