Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\)
nên \(\dfrac{x}{7}=\dfrac{y}{20}\)(1)
Ta có: \(\dfrac{y}{z}=\dfrac{5}{8}\)
nên \(\dfrac{y}{5}=\dfrac{z}{8}\)
hay \(\dfrac{y}{20}=\dfrac{z}{32}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)
hay \(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)
mà 2x-5y+2z=100
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x-5y+2z}{14-100+64}=\dfrac{100}{-22}=\dfrac{-50}{11}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{7}=\dfrac{-50}{11}\\\dfrac{y}{20}=\dfrac{-50}{11}\\\dfrac{z}{32}=-\dfrac{50}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{350}{11}\\y=\dfrac{-1000}{11}\\z=\dfrac{-1600}{11}\end{matrix}\right.\)
Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\Rightarrow\dfrac{x}{14}=\dfrac{y}{40}\Rightarrow\dfrac{2x}{28}=\dfrac{5y}{200}\) \(\left(1\right)\)
Lại có: \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{40}=\dfrac{z}{64}\Rightarrow\dfrac{5y}{200}=\dfrac{2z}{128}\) \(\left(2\right)\)
Kết hợp ( 1 ) và ( 2 ) ta có: \(\dfrac{2x+5y-2z}{28+200-128}=\dfrac{100}{100}=1\)
⇒ \(\dfrac{2x}{28}=1\Rightarrow x=\dfrac{1.28}{2}=14\)
⇒ \(\dfrac{5y}{200}=1\Rightarrow y=\dfrac{1.200}{5}=40\)
⇒ \(\dfrac{2z}{128}=1\Rightarrow z=\dfrac{1.128}{2}=64\)
ta có \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
=>\(\frac{x+y+z}{2x+2y+2z+1+1-2}=x+y+z\)
=>\(\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
=>\(\frac{1}{2}=x+y+z\)
Ta sẽ đưa các tích về 1 dãy tỉ số
\(3x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{3}\Leftrightarrow\frac{x}{15}=\frac{y}{9},7y=9z\Leftrightarrow\frac{y}{9}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{9}=\frac{z}{7},x-y+z=117\left(gt\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau cho dãy tỉ số trên ta được
\(\frac{x}{15}=\frac{y}{9}=\frac{z}{7}=\frac{x-y+z}{15-9+7}=\frac{117}{13}=9\Rightarrow x=15.9=135,y=9.9=81,z=7.9=63\)
Vậy \(x=135,y=81,z=63\)
Ta có: \(3x=5y=\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x}{15}=\frac{y}{9}\)
\(7y=9z=\frac{y}{9}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{9}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{9}=\frac{z}{7}=\frac{x-y+z}{15-9+7}=\frac{117}{13}=9\)
\(\Rightarrow\frac{x}{15}=9\Rightarrow x=9\cdot15=135\)
\(\frac{y}{9}=9\Rightarrow y=9\cdot9=81\)
\(\frac{z}{7}=9\Rightarrow z=9\cdot7=63\)
Vậy x=135, y=81 và z=63
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) va \(x^2+y^2-z^2=585\)
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
Suy ra : \(\frac{x^2}{25}=9\Rightarrow x^2=9.25=225\Rightarrow x=15\) hoac \(x=-15\)
\(\frac{y^2}{49}=9\Rightarrow y^2=9.49=441\Rightarrow y=21\)hoac \(y=-21\)
\(\frac{z^2}{9}=9\Rightarrow z^2=9.9=81\Rightarrow z=9\) hoac \(z=-9\)
x và y tỉ lệ nghịch với 6 và 5
nên 6x=5y
=>x/5=y/6
y và z tỉ lệ nghịch với 4 và 3
nên 4y=3z
=>y/3=z/4
=>x/5=y/6=z/8=(x+y+z)/(5+6+8)=38/19=2
=>x=10; y=12; z=16
O sao mà khó thế bn !
mk rối cả lên
~~``@!#$%^&*()_-+=|\{[}]:;"'<,>.?/
do mk .... chong ... mat ... qua
X(X+Y+Z) = -5 (1)
Y(X+Y+Z) = 9 (2)
Z(X+Y+Z) = 5 (3)
Cộng (1) ;(2); (3) VTV ta có :
\(^{\left(X+Y+Z^{ }\right)^2}\)= -5 +9 +5
\(\Rightarrow\)\(\left(X+Y+Z\right)^2\)= 9
\(\Rightarrow\)X+ Y+ Z= 3 (4) hoặc X +Y +Z = -3 (5)
Khi X + Y +Z =3 thì thay (4) vào (1) ;(2) ;(3) ta có :
3X =-5
\(\Rightarrow\)X =\(\frac{-5}{3}\)
3Y=9 \(\Rightarrow\)Y =3
3Z =5 \(\Rightarrow\)Z =\(\frac{5}{3}\)
Khi X + Y +Z = -3 thì thay 5 vào (1);(2) ;(3) ta có :
-3X =-5 \(\Rightarrow\)X= \(\frac{5}{3}\)
-3Y =9 \(\Rightarrow\)Y = -3
-3Z =5 \(\Rightarrow\)Z=\(\frac{-5}{3}\)
Vậy (X;Y;Z)là (\(\frac{-5}{3}\);3;\(\frac{5}{3}\)) ;(\(\frac{5}{3}\);-3;\(\frac{-5}{3}\))
Nhớ k cho mik nha....