K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

b tham khảo nhé

26 tháng 12 2021

\(\dfrac{3x-2y}{4}=\dfrac{4y-3z}{2}=\dfrac{2z-4x}{3}=\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\\ \Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2z-4x=0\\4y-3z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\\ \Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-2y+3z}{2-6+12}=\dfrac{8}{8}=1\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\\z=4\end{matrix}\right.\)

suy ra:

\(\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)

\(=\dfrac{12x-8y+6z-12x+8y-6z}{29}=0\)

Vậy

\(\dfrac{3x-2y}{4}=0\Rightarrow3x=\dfrac{2y\Rightarrow x}{2}=\dfrac{y}{3}\left(1\right)\)

\(\dfrac{2z-4x}{4}=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\left(2\right)\)

từ (1) và (2) ta được\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

6 tháng 8 2021

 

suy ra:

 

4(3x−2y)16=3(2z−4x)9=2(4y−3z)4

=12x−8y+6z−12x+8y−6z29=0

Vậy

3x−2y4=0⇒3x=2y⇒x2=y3(1)

30 tháng 1 2022

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

=>\(\dfrac{4\left(3x-2y\right)}{4.4}=\dfrac{3\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)

=>\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

=>\(\dfrac{12x-8y}{16}=0\)

=>12x-8y=0

=>12x=8y

=>\(\dfrac{12x}{24}=\dfrac{8y}{24}\)

=>\(\dfrac{x}{2}=\dfrac{y}{3}\)(1)

Lại có \(\dfrac{8y-6z}{4}=0\)

=>8y-6z=0

=>8y=6z

=>\(\dfrac{8y}{24}=\dfrac{6z}{24}\)

=>\(\dfrac{y}{3}=\dfrac{z}{4}\)(2)

từ (1) và (2)=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

30 tháng 1 2022

- Bạn tham khảo à?

17 tháng 10 2021

giúp mình với cảm ơn trước nha

 

5 tháng 12 2017

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Rightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)

\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{16+9+4}=0\)\(\Rightarrow\left\{{}\begin{matrix}3x=2y\\2z=4x\\4y=3z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{3}{9}=\dfrac{1}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{1}{3}=\dfrac{2}{3}\\y=3.\dfrac{1}{3}=1\\z=4.\dfrac{1}{3}=\dfrac{4}{3}\end{matrix}\right.\)

30 tháng 12 2017

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Rightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)

\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

30 tháng 12 2017

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\\ \Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\\ =\dfrac{\left(12x-8y\right)+\left(6z-12x\right)+\left(8y-6z\right)}{16+9+4}=\dfrac{0}{29}=0\\ \Rightarrow3x=2y;2z=4x;4y=3z\\ \Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)