Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(\text{x(x-y+z)=-11
y(y-z-x)=25
z(z+x-y)=35 }\)
Cộng lại ta đc: x2+ y2+ z2 -xy +xz -yz-xy +xz -yz = x2+ y2+ z2 -2xy +2xz -2yz = ( x- y+ z)2=49
\(\Leftrightarrow\)x-y+z = 7 thay vào x(x-y+z)=-11 ta có: x. 7=-11 suy ra x= -11/7
z(z+x-y)=35 ta có: z .7 =35 suy ra z = 5
Thay x và z vào đẳng thức còn lại ta tìm đc y bn tự lm nhé!
b,xy=2/3
yz=0,6
zx=0,625
Nhân 3 đẳng thức trên với nhau ta đc:
xy.yz.zx = 2/3 . 0,6 . 0,625
\(\Leftrightarrow\)(xyz)2= 0, 25
\(\Leftrightarrow\)xyz = 0,5 thay vào xy = 2/3 ta có: z = 0,5 : 2/3 = 3/4 ( lấy xyz chia cho xy)
Tự lm tiếp nhé!
a)Ta có: xy=2/3 và yz=0,6
nên xy*yz=2/3*0,6
xz*y2=0,4
mà xz=0,625
nên 0,625*y2=0,4
y2=0,4/0,625
y2=0,64 nên y=0,8 hoặc y=-0,8
*)nếu y=0,8
thì x=2/3:0,8=5/6
thì z=0,6:0,8=0,75
*)Nếu y=-0,8
thì x=2/3:(-0,8)=-5/6
thì z=0,6:(-0,8)=-0,75
Bài 2:
Ta có: \(\dfrac{x-1}{65}+\dfrac{x-3}{63}=\dfrac{x-5}{61}+\dfrac{x-7}{59}\)
\(\Leftrightarrow\left(\dfrac{x-1}{65}-1\right)+\left(\dfrac{x-3}{63}-1\right)=\left(\dfrac{x-5}{61}-1\right)+\left(\dfrac{x-7}{59}-1\right)\)
\(\Leftrightarrow\left(x-66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\right)=0\)
=>x-66=0
hay x=66
\(\dfrac{xy}{x+y}=\dfrac{yz}{y+z}=\dfrac{zx}{z+x}\\ \Rightarrow\dfrac{x+y}{xy}=\dfrac{y+z}{yz}=\dfrac{z+x}{zx}\\ \Rightarrow\dfrac{1}{y}+\dfrac{1}{x}=\dfrac{1}{z}+\dfrac{1}{y}=\dfrac{1}{x}+\dfrac{1}{z}\\ \Rightarrow\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}\\ \Rightarrow x=y=z\)
\(\Rightarrow P=\dfrac{xy+yz+zx}{x^2+y^2+z^2}=\dfrac{x^2+x^2+x^2}{x^2+x^2+x^2}=1\)
Bài làm:
Dễ thấy a,b,c khác 0
Ta có: \(\frac{xy}{x+y}=\frac{12}{7}\Leftrightarrow\frac{x+y}{xy}=\frac{7}{12}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{7}{12}\) (1)
Tương tự ta tách ra được: \(\frac{1}{y}+\frac{1}{z}=-\frac{1}{6}\) (2) ; \(\frac{1}{z}+\frac{1}{x}=-\frac{1}{4}\) (3)
Cộng vế (1);(2) và (3) lại ta được:
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{6}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{12}\) (4)
Cộng vế (1) và (2) lại ta được: \(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}=\frac{5}{12}\)
Thay (4) vào ta được: \(\frac{1}{y}+\frac{1}{12}=\frac{5}{12}\Leftrightarrow\frac{1}{y}=\frac{1}{3}\Rightarrow y=3\)
Từ đó ta dễ dàng tính được: \(\hept{\begin{cases}\frac{1}{x}=\frac{7}{12}-\frac{1}{3}=\frac{1}{4}\\\frac{1}{z}=-\frac{1}{6}-\frac{1}{3}=-\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=-2\end{cases}}\)
Vậy \(\left(x;y;z\right)=\left(4;3;-2\right)\)
Bn tham khảo nha :
https://olm.vn/hoi-dap/detail/55561591911.html
* Bn vô thống kê hỏi đáp của mik xem thì link mới hoạt động *
~ Hok tốt ~
#Gumball
Đang tl thì cái quảng cáo nở ra, bấm Đồng ý ở chỗ nhập Công thức thì mất sạch cả 2 bài, tiếc quá, thôi ko làm nữa
a, Nhân từng vế ba đẳng thức được :
\(xy\cdot yz\cdot xz=\frac{2}{3}\cdot\frac{3}{5}\cdot\frac{5}{8}\)
\(\Rightarrow x^2y^2z^2=\frac{2}{8}=\frac{1}{4}\)
\(\Rightarrow(xyz)^2=\frac{1}{4}\), do đó \(xyz=\pm\frac{1}{2}\).
Nếu xyz = \(\frac{1}{2}\) thì cùng với xy = \(\frac{2}{3}\)suy ra z = \(\frac{3}{4}\) , cùng với yz = \(\frac{3}{5}\)suy ra x = \(\frac{5}{6}\), cùng với zx = \(\frac{5}{8}\)suy ra y = \(\frac{4}{5}\)
Nếu xyz = \(-\frac{1}{2}\)thì lập luận tương tự như trên suy ra : z = \(-\frac{3}{4}\), x = \(-\frac{5}{6}\), y = \(-\frac{4}{5}\)
b, Cộng từng vế ba đẳng thức được :
\(x(x-y+z)+y(y-z-x)+z(z+x-y)=49\)
Do đó \((z-y+x)^2=49\)nên \(z-y+x=\pm7\)
Tìm hai đáp số rồi xong
b) \(\Rightarrow x\left(x-y+z\right)+y\left(y-z-x\right)+z\left(z+x-y\right)=49\)
\(\Rightarrow x^2-xy+xz+y^2-yz-xy+z^2+xz-yz=49\)
\(\Rightarrow x^2+y^2+z^2-2xy-2yz+2xz=49\)
\(\Rightarrow x^2+\left(-y\right)^2+z^2+2x\left(-y\right)+2\left(-y\right)z+2xz=49\)
\(\Rightarrow\left(x+\left(-y\right)+z\right)^2=49\)
\(\Rightarrow\orbr{\begin{cases}x-y+z=7\\x-y+z=-7\end{cases}}\)
+) \(x-y+z=7\)\(\Rightarrow\hept{\begin{cases}x=\frac{-11}{7}\\y=\frac{-25}{7}\\z=5\end{cases}}\)
+) \(x-y+z=-7\)\(\Rightarrow\hept{\begin{cases}x=\frac{11}{7}\\y=\frac{25}{7}\\z=-5\end{cases}}\)