Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
\(\frac{x-1}{2}=\frac{y+3}{3}=\frac{z-5}{6}\)\(\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}=\frac{5z-30-3x+3-4y-12}{30-16-6}=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\frac{3x-3}{6}=2\) 3x-3=12 3x=15 x=5 | \(\frac{4y+12}{16}=2\) 4y+12=32 4y=20 y=5 | \(\frac{5z-25}{30}=2\) 5z-25=60 5z=85 z=17 |
Cái sai của bạn là sao không ghép với cái phân số ban đầu=> hệ số nhỏ đỡ mệt hơn không
x-1=2.2=> x=5
y+3=4.2=> y=5
z-5=6.2=>z=17
Ta có: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(\Rightarrow\) \(\frac{z-5}{6}=\frac{x-1}{2}=\frac{y+3}{4}\)
\(\Rightarrow\frac{5z-25}{30}=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{\left(5z-3x-4y\right)-25+3-12}{30-6-16}=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\)x = 5
y = 5
z = 17
x-1/2=y+3/4=z-5/6=k suy ra x-1=2k;y+3=4k;z-5=6k va x=2k+1;y=4k-3;z=6k+5
5(6k+5)-3(2k+1)-4(4k-3)=25+30k-3+6k-16k-12=(25-3-12)+(30k+6k-16k)
=10+20k=50 suy ra 20k=50-10=40 suy ra k=40:20=2
x=2.2+1=5
y=2.4-3=5
z=2.6+5=17
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
=> \(\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
=> \(\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}=\frac{5z-25-3x+3-4y-12}{30-6-16}=\frac{50-34}{8}=\frac{16}{8}=2\)
=> 3x - 3 = 12 => 3x = 15 => x = 5
4y + 12 = 32 => 4y = 20 => y = 5
5z - 25 = 60 => 5z = 85 => z = 17
Vậy x = 5 , y = 5 , z = 17
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
Ta có: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)\(=\frac{5z-25-3x+3-4y-12}{6-16-30}\)\(=\frac{\left(5z-3x-4y\right)-\left(25-3+12\right)}{-40}\)\(=\frac{50-34}{-40}=\frac{16}{-40}=\frac{2}{-5}\)
+) \(\frac{x-1}{2}=\frac{-2}{5}\Rightarrow5\left(x-1\right)=-4\Rightarrow x-1=\frac{-4}{5}\)\(\Rightarrow x=\frac{-4}{5}+1=\frac{1}{5}\)
+)\(\frac{y+3}{4}=\frac{-2}{5}\Rightarrow5\left(y+3\right)=-8\Rightarrow y+3=\frac{-8}{5}\)\(\Rightarrow y=\frac{-8}{5}-3=\frac{-23}{5}\)
+)\(\frac{z-5}{6}=\frac{-2}{5}\Rightarrow5\left(z-5\right)=-12\Rightarrow z-5=\frac{-12}{5}\)\(\Rightarrow z=\frac{-12}{5}+5=\frac{13}{5}\)
Vậy...
Ta có: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\Leftrightarrow\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4y-20}{24}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{-3x+3}{-6}=\frac{4y+12}{16}=\frac{5z-25}{30}=\frac{-3x+3-4y-12+5z-25}{10-12+30}=\frac{\left(5z-3x-4y\right)+\left(3-12-25\right)}{28}=\frac{50-34}{28}=\frac{4}{7}\)
Đặt \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=k\)
=> x = 2k + 1
y = 4k - 3
z = 6k + 5
Thay vào biểu thức 5z - 3x - 4y = 50 , ta có :
5z - 3x - 4y = 50
=> 5.(6k + 5) - 3.(2k + 1) - 4.(4k - 3) = 50
=> 30k + 25 - (6k + 3) - (16k - 12) = 50
=> 30k + 25 - 6k - 3 - 16k + 12 = 50
=> (30k - 6k - 16k) + (25 - 3 + 12) = 50
=> 8k + 34 = 50
=> 8k = 16
=> k = 2
=> \(\hept{\begin{cases}x=2k+1=2.2+1=5\\y=4k+3=4.2+3=11\\z=6k+5=6.2+5=17\end{cases}}\)
b)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
=> x = 2k
y = 3k
z = 4k
Thay vào biểu thức M , ta có :
\(M=\frac{y+z-x}{x-y+z}=\frac{3k+4k-2k}{2k-3k+4k}=\frac{5k}{3k}=\frac{5}{3}\)