Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)
Do đó: x=-70; y=-135; z=-84
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x10=y15=z12=x−y+z10−15+12=−497=−7x10=y15=z12=x−y+z10−15+12=−497=−7
Do đó: x=-70; y=-135; z=-84
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
Áp dụng t/c dtsbn:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{11}=\dfrac{x+y+z}{5+7+11}=\dfrac{-46}{23}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-2\right).5=-10\\y=\left(-2\right).7=-14\\z=\left(-2\right).11=-22\end{matrix}\right.\)
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\text{ và }2x-y+z=36\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{2x-y+z}{2.3-5+7}=\dfrac{36}{8}=\dfrac{9}{2}\)
\(\Rightarrow x=\dfrac{9.3}{2}=\dfrac{27}{2}\)
\(y=\dfrac{9.5}{2}=\dfrac{45}{2}\)
\(z=\dfrac{9.7}{2}=\dfrac{63}{2}\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{6}=\dfrac{x-y}{5-3}=\dfrac{4}{2}=2\)
\(\dfrac{x}{5}=2\Rightarrow x=10\\ \dfrac{y}{3}=2\Rightarrow y=6\\ \dfrac{z}{6}=2\Rightarrow z=12\)
Ta có: \(\dfrac{x}{6}=\dfrac{y}{6}:\dfrac{y}{8}=\dfrac{z}{7}\)
\(\Leftrightarrow\dfrac{x}{6}=\dfrac{4}{3}=\dfrac{z}{7}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\z=\dfrac{28}{3}\end{matrix}\right.\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{13}=\dfrac{y}{7}=\dfrac{z}{5}=\dfrac{x-y-z}{13-7-5}=\dfrac{6}{1}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=13.6=78\\y=13.7=91\\z=13.5=65\end{matrix}\right.\)