Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5x = 8y = 20z suy ra 5x/40 = 8y/40 = 20z/40 suy ra x/8 = y/5 = z/2 . ap dung tinh chat day ty so bang nhau ta co x/8 =y/5 =z/2 = x-y-z/8-5-2 =3 /1 =3 . tu x/8 =3 suy ra x =24 . tu y /6=3 suy ra y=18 . tu z/2 =3 suy ra z =6 . vay x = 24 , y = 18 , z = 6
a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)
8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)
=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)
=> x = 24,y = 15,z = 6
b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)
=> x = -165 , y = -20 , z = -25
c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k
=> xyz = 12k . 9k . 5k
=> xyz = 540k3
=> 540k3 =20
=> k3 = 20/540
=> k3 = 1/27
=> k = 1/3
Do đó : x= 4 , y = 3 , z = 5/3
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\)\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)
Áp dụng tính chất của dãy tủ số bằng nhau ta có:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\frac{x}{4}=2=>x=8\)
\(\frac{3y}{9}=2=>y=6\)
\(\frac{4z}{36}=2=>z=18\)
Ta có: a) \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\\x-3y+4x=62\end{cases}\Rightarrow\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2}\)
\(\Rightarrow\hept{\begin{cases}x=2.4=8\\y=2.3=6\\z=2.9=18\end{cases}}\)
a)5x=6y=20z=>\(\frac{x}{12}=\frac{y}{10}=\frac{z}{3}\) và x-y-z=3
Áp dụng t/c của dãy tỉ số bàng nhau ta có:
\(\frac{x}{12}=\frac{y}{10}=\frac{z}{3}\)=\(\frac{x-y-z}{12-10-3}=\frac{3}{-1}=-3\)
=>x=(-3).12=-36
y=(-3).10=-30
z=(-3).3=-9
b)\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)và x+y+z=-120
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{33+4+5}=-\frac{120}{42}=-\frac{20}{7}\)
=>x=-30/7 . 33 =-990/7
y=-20/7 . 4=-80/7
z=-20/7 . 5=-100/7
a) Theo đề được: \(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{20}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{20}}=\frac{x-y-z}{\frac{1}{5}-\frac{1}{6}-\frac{1}{20}}=\frac{3}{-\frac{1}{60}}=-180\)
\(\frac{x}{\frac{1}{5}}=5x=-180\Rightarrow x=-180:5=-36\)
6y=-180 => y= - 30
20z = -180 => z = -9
b) Đề sai
a) Ta có: \(5x=8y=20z.\)
=> \(\frac{x}{8}=\frac{y}{20}=\frac{z}{5}\) và \(x-y-z=3.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{8}=\frac{y}{20}=\frac{z}{5}=\frac{x-y-z}{8-20-5}=\frac{3}{-17}=\frac{-3}{17}.\)
\(\left\{{}\begin{matrix}\frac{x}{8}=\frac{-3}{17}\Rightarrow x=\left(-\frac{3}{17}\right).8=-\frac{24}{17}\\\frac{y}{20}=\frac{-3}{17}\Rightarrow y=\left(-\frac{3}{17}\right).20=-\frac{60}{17}\\\frac{z}{5}=\frac{-3}{17}\Rightarrow z=\left(-\frac{3}{17}\right).5=-\frac{15}{17}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(-\frac{24}{17};-\frac{60}{17};-\frac{15}{17}\right).\)
Chúc bạn học tốt!
a, Theo đề bài ta có:
\(5x=8y=20z\Rightarrow\frac{x}{5}=\frac{y}{8}=\frac{z}{20}\)
Và \(x-y-z=3\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{8}=\frac{z}{20}=\frac{x-y-z}{5-8-20}=\frac{3}{-23}=-\frac{3}{2}\)
\(\left\{{}\begin{matrix}\frac{x}{5}=-\frac{3}{2}\Rightarrow x=-\frac{3}{2}.5=-\frac{15}{2}\\\frac{y}{8}=-\frac{3}{2}\Rightarrow y=-\frac{3}{2}.8=-12\\\frac{z}{20}=-\frac{3}{2}\Rightarrow x=-\frac{3}{2}.20=-30\end{matrix}\right.\)
Vậy x = \(-\frac{15}{2};y=-12;z=-30\)
a) Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\)
\(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\)
\(\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)
\(\Rightarrow\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)
Áp dụng tc dãy tỉ số bằng nhau:
\(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=2\)
Do \(\left\{{}\begin{matrix}\dfrac{2x}{14}=2\\\dfrac{5y}{100}=2\\\dfrac{2z}{64}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=14\\y=40\\z=64\end{matrix}\right.\).
b) \(5x=8y=20z\Rightarrow\dfrac{5x}{40}=\dfrac{8y}{40}=\dfrac{20z}{40}\)
\(\Rightarrow\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}\)
Áp dụng...
\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)
....
c) \(\dfrac{6}{11}x=\dfrac{9}{2}y=\dfrac{18}{5}z\Rightarrow\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}\)
...
a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:
x/4 =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2
=> x=2.4=8
y=2.3=6
z=2.9=18
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)
ADTCCDTSBN, ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow x=2.4=8\)
\(y=2.3=6\)
\(z=2.9=18\)
b) Đề có nhầm lẫn j k nhỉ =.=
c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)
ADTCCDTSBN, ta có:
\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)
\(\Rightarrow x=-40:5=-8\)
\(y=-40:8=-5\)
\(z=-40:20=-2\)
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)