K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

\(2x=3y=4z\)

\(\Leftrightarrow\dfrac{2x}{12}=\dfrac{3y}{12}=\dfrac{4z}{12}\)

\(\Leftrightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)

Đặt :

\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6k\\y=4k\\z=3k\end{matrix}\right.\)

\(2x^2-3z^2=1125\Leftrightarrow2.\left(6k\right)^2-3.\left(3k\right)^2=1125\Leftrightarrow72k^2-27k^2=1125\)

\(\Leftrightarrow45k^2=1125\)

\(\Leftrightarrow k^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\)

Với \(k=5\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6.5=30\\y=4.5=20\\z=3.5=15\end{matrix}\right.\)

Với \(k=-5\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6.\left(-5\right)=-30\\y=4.\left(-5\right)=-20\\z=3.\left(-5\right)=-15\end{matrix}\right.\)

Vậy ...

14 tháng 7 2018

\(\dfrac{2x}{5}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

\(\Rightarrow\dfrac{2}{5}x=\dfrac{3}{4}y=\dfrac{4}{5}z\)

\(\Rightarrow\dfrac{2}{5}x.\dfrac{1}{12}=\dfrac{3}{4}y.\dfrac{1}{12}=\dfrac{4}{5}z.\dfrac{1}{12}\)

\(\Rightarrow\dfrac{x}{30}=\dfrac{y}{16}=\dfrac{z}{15}\)

Đặt \(\dfrac{x}{30}=\dfrac{y}{16}=\dfrac{z}{15}=k\Rightarrow\left\{{}\begin{matrix}x=30k\\y=16k\\z=15k\end{matrix}\right.\). Ta có:

\(x+y+z=49\)

\(\Rightarrow30k+16k+15k=49\)

\(\Rightarrow61k=49\)

\(\Rightarrow k=\dfrac{49}{61}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{49}{61}.30=\dfrac{1470}{61}\\y=\dfrac{49}{61}.16=\dfrac{784}{61}\\z=\dfrac{49}{61}.15=\dfrac{735}{61}\end{matrix}\right.\)

\(\dfrac{2x}{5}=\dfrac{3y}{2}=\dfrac{5z}{7}\)

\(\Leftrightarrow28x=105y=50z\)

hay x/75=y/20=z/42

Đặt x/75=y/20=z/42=k

=>x=75k; y=20k; z=42k

Ta có: xyz=504000

\(\Leftrightarrow k^3\cdot63000=504000\)

\(\Leftrightarrow k=2\)

=>x=150; y=40; z=84

QT
Quoc Tran Anh Le
Giáo viên
18 tháng 7 2018

Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\) => \(\left(\dfrac{x}{3}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{5}\right)^2\)

=> \(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{25}=\dfrac{2x^2+y^2-z^2}{2.9+16-25}=\dfrac{9}{18+16-25}=\dfrac{9}{9}=1\)

=> \(\left\{{}\begin{matrix}\dfrac{x^2}{9}=1\Rightarrow\dfrac{x}{3}=1\Rightarrow x=3\\\dfrac{y^2}{16}=1\Rightarrow\dfrac{y}{4}=1\Rightarrow y=4\\\dfrac{z^2}{25}=1\Rightarrow\dfrac{z}{5}=1\Rightarrow z=5\end{matrix}\right.\)

Vậy x = 3, y = 4, z = 5

Đặt x/3=y/4=z/5=k

=>x=3k; y=4k; z=5k

Ta có: \(2x^2+y^2-z^2=9\)

\(\Leftrightarrow18k^2+16k^2-25k^2=9\)

\(\Leftrightarrow9k^2=9\)

\(\Leftrightarrow k^2=1\)

TH1: k=1

=>x=3; y=4; z=5

TH2: k=-1

=>x=-3; y=-4; z=-5

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

4 tháng 2 2017

PT(1) nhân 3 pt(2) nhân 2 

<=>\(\hept{\begin{cases}-6x+9y=6\\6x+10y=24\end{cases}}\)

công lại

=> 19y=30=> y=30/19 (lẻ nhỉ)

thế vào (1)=> -2x+90/19=2

x=90/19-2)/2=(45-19)=26/19

4 tháng 2 2017

theo bài ra ta có 

(-2x + 3y) +(3x + 5y = 2 + 12 

=> - 2x + 3y + 3x + 5y = 14 

=> x + 8y = 14  

=> 2(x+8y)= 2 x 14 

=> 2x + 16y = 28 (1) 

ta lại có 

2x + 16y + (-2x) + 3y = 28 + 2 

=> 19y = 30 

=> y= ....

đến đây cậu tự tìm x nhé

14 tháng 7 2018

Đặt  \(x=\frac{y}{2}=\frac{z}{3}=k\left(k\in Q\right)\)\(\Rightarrow x=k;y=2k;z=3k\)

Thế (1) vào biểu thức trên

\(\Rightarrow2\left(x^2+y^2\right)-z^2=9\)

\(\Leftrightarrow2\left[\left(k\right)^2+\left(2k\right)^2\right]-\left(3k\right)^2=9\)

\(\Rightarrow2\left(k^2+4k^2\right)-9k^2=9\)

\(\Rightarrow2k^2+8k^2-9k^2=9\)

\(\Rightarrow k^2=9\)

\(\Rightarrow k=\hept{\begin{cases}3\\-3\end{cases}}\)

Với k = 3

\(\Rightarrow x=3;y=3.2=6;z=3.3=9\)

Với k = -3

\(\Rightarrow x=-3;y=-3.2=-6;z=-3.3=-9\)

14 tháng 7 2018

Đặt x = y/2 = z/3 = k= \(\hept{\begin{cases}x=1.k\\y=2.k\\z=3.k\end{cases}}\)

2 ( x2+y2) - z2 = 9 => .....( mình mới làm được đến đấy thôi! ) 

Sửa đề: 3(x-1)=2(y+2)

Ta có: 3(x-1)=2(y+2)

\(\Leftrightarrow6\left(x-1\right)=4\left(y+2\right)\)

mà 4(y+2)=5(z-3)

nên \(6\left(x-1\right)=4\left(y+2\right)=5\left(z-3\right)\)

\(\Leftrightarrow\dfrac{x-1}{\dfrac{1}{6}}=\dfrac{y+2}{\dfrac{1}{4}}=\dfrac{z-3}{\dfrac{1}{5}}\)

\(\Leftrightarrow\dfrac{2x-2}{\dfrac{1}{3}}=\dfrac{3y+6}{\dfrac{3}{4}}=\dfrac{4z-12}{\dfrac{4}{5}}\)

mà 2x+3y-4z=205

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x-2}{\dfrac{1}{3}}=\dfrac{3y+6}{\dfrac{3}{4}}=\dfrac{4z-12}{\dfrac{4}{5}}=\dfrac{2x-2+3y+6-4z+12}{\dfrac{1}{3}+\dfrac{3}{4}-\dfrac{4}{5}}=\dfrac{205+16}{\dfrac{17}{60}}=780\)

Do đó: 

\(\left\{{}\begin{matrix}\dfrac{2x-2}{\dfrac{1}{3}}=780\\\dfrac{3y+6}{\dfrac{3}{4}}=780\\\dfrac{4z-12}{\dfrac{4}{5}}=780\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-2=260\\3y+6=585\\4z-12=624\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=262\\3y=579\\4z=636\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=131\\y=193\\z=159\end{matrix}\right.\)

Vậy: (x,y,z)=(131;193;159)