K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 7 2021

\(\Leftrightarrow\left(x^2y^4-16xy^3+64y^2\right)+\left(4y^2-4xy+x^2\right)=0\)

\(\Leftrightarrow\left(xy^2-8y\right)^2+\left(2y-x\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy^2-8y=0\\2y-x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy^2-8y=0\\x=2y\end{matrix}\right.\)

\(\Rightarrow2y.y^2-8y=0\)

\(\Leftrightarrow2y\left(y^2-4\right)=0\Rightarrow\left[{}\begin{matrix}y=0\Rightarrow x=0\\y=2\Rightarrow x=4\\y=-2\Rightarrow x=-4\end{matrix}\right.\)

29 tháng 3 2016

 Câu trả lời hay nhất:  x² - 4x +y - 6√(y) + 13 = 0 
<=> (x^2 - 4x +4) + (√(y)^2 - 6√(y) + 9) = 0 
<=> (x-2)^2 + (√(y) -3)^2 = 0 
VT >=0 dấu = xảy ra <=> x = 2 ; y = 9 

b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
<=> ((xy²)² - 16xy³ + 64y²) + (4y^2 - 4xy + x^2) = 0 
<=> (xy² - 8y)^2 + (2y - x)^2 = 0 
VT >=0 => dấu = <=> xy² - 8y = 0 và 2y - x = 0 
<=> y = 0 ; x = 0 hoặc x = 4 ; y = 2 hoặc x = -4 ;y = -2 
c/ 
x² - x²y - y + 8x + 7 = 0 
<=> x²(1-y) + 8x - y + 7 = 0 
xét delta' = 4^2 - (1-y)(7-y) = 16 - 7 -y^2 + 8y = -(y^2 -8y + 16) +25 = 25 - (y-4)^2 
để pt có nghiệm thì delta' >=0 
<=> (y-4)^2 <=25 
<=> -1<= y <=9 
=> max y = 9 
=> x = 3/2 hoặc x = -1/2 
3/ 
x² - 6x + 1 =0. nhân cả 2 vế với x^(n-1) ta được 
x^(n+1) - 6x^n + x^(n-1) = 0 
với S(n) = x1ⁿ +x2ⁿ ta có: 
S(n+1) - 6S(n) + S(n-1) = 0 
<=> S(n+1) = 6S(n) - S(n-1) 
với S(1) = 6 
S(2) = 22 
=> S(3) nguyên 
=> S(4) nguyên 
=> S(n) nguyên (do biểu thức truy hồi S(n+1) = 6S(n) - S(n-1)) 
ta có: 
S(1) không chia hết cho 5 
S(2) .............................. 
=> S(3) = 6S(2) - S(1) = 6.(22 -1) = 6.21 không chia hết cho 5 
S(n) và S(n-1) ko chia hết cho 5 => 
S(n+1) = S(n) + S(n-1) ko chia hết cho 5 
 

13 tháng 7 2020

\(x^2y^2-16xy+99=9x^2+36y^2+13x+26y\)

\(\Leftrightarrow\left(xy+10\right)^2=9\left(x+2y\right)^2+13\left(x+2y\right)+1\)

Khi đó ta dễ thấy:

\(\left(3x+6y\right)^2< \left(xy+10\right)^2< \left(3x+6y+2\right)^2\)

\(\Rightarrow\left(xy+10\right)^2=\left(3x+6y+1\right)^2\)

Đến đây thì quá dễ rồi nhá, bạn tự làm nốt

4 tháng 8 2019

Ta có: \(x^2+4y^2+x=4xy+2y+2\)

        \(\Rightarrow x^2-4xy+4y^2+x-2y=2\)

      \(\Rightarrow\left(x-2y\right)^2+\left(x-2y\right)=2\)

      \(\Rightarrow\left(x-2y\right)\left(x-2y+1\right)=2\) 

Tìm các TH

Mặt khác : \(4x^2+4xy+y^2=2x+y+56\) 

                \(\Rightarrow\left(2x+y\right)^2-\left(2x+y\right)=56\)

               \(\Rightarrow\left(2x+y\right)\left(2x+y-1\right)=56\)

Tìm các TH

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:

$x^2-x^2y-y+8x+7=0$

$\Leftrightarrow x^2+8x+7=y(x^2+1)$

$\Leftrightarrow y=\frac{x^2+8x+7}{x^2+1}$

$\Leftrightarrow y=\frac{(x^2+1)+8x+6}{x^2+1}=1+\frac{8x+6}{x^2+1}$

Áp dụng bđt AM-GM ta có:
$x^2+\frac{1}{4}\geq |x|\geq x$
$\Rightarrow x^2+1\geq x+\frac{3}{4}=\frac{4x+3}{4}$

$\Rightarrow \frac{8x+6}{x^2+1}\leq \frac{2(4x+3)}{\frac{4x+3}{4}}=8$

$\Rightarrow y\leq 1+8=9$

Vậy $y_{\max}=9$

$x^2=\frac{1}{4}$; $x\geq 0\Rightarrow x=\frac{1}{2}$

 

30 tháng 7 2021

pt\(\Leftrightarrow x^2\left(1-y\right)+8x+7-y=0\) (1)

Ta có :\(\Delta\)(x)=\(-y^2+8y+9\)(do làm biếng  nên làm ra denta luôn)

Để tồn tại MAX y thì PT (1) có ngiệm nên \(\Delta\ge0\) \(\Leftrightarrow-y^2+8y+9\ge0\)

\(\Leftrightarrow-y^2-y+9y+9\ge0\Leftrightarrow-y\left(y+1\right)+9\left(y+1\right)\ge0\)

\(\Leftrightarrow\left(y+1\right)\left(9-y\right)\ge0\)

Giải BPT ta được : \(-1\le y\le9\)

\(\Rightarrow\) Max y =9. Thay y=9 vào (1)\(\Rightarrow x=\dfrac{1}{2}\)

Vậy Max y=9\(\Leftrightarrow x=\dfrac{1}{2}\)