K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2016

Ta có:

x - y = x.y => x = x.y + y = y.(x + 1)

=> \(\frac{x}{y}=x+1=x-y\) = x + (-y)

=> -y = 1 hay y = -1

=> x = -1.(x + 1) = -x - 1

=> x + x = -1 = 2x

=> \(x=\frac{-1}{2}\)

Vậy \(x=\frac{-1}{2};y=-1\)

2 tháng 10 2016

Ta có : x/3=y/2      = x/12 = y /8 

         y/4=z/5       = y/8 = z/10 ( mình biến đổi sao cho y có mẫu chung là 8 ý bạn )

   => x/12=y/8=z/10 = -x-y+z/ -12-8+10 

                               = -10/-10 =1

=> x = 1.12=12

     y=1.8=8

    z=1.10=10

        

   

1 tháng 7 2017

x và y có hơn 3 nghiệm nhé :) coi chừng xót

8 tháng 11 2016

a)

\(\frac{x}{2}=\frac{y}{4}\)

\(\Rightarrow\frac{x^4}{16}=\frac{y^4}{256}=\frac{x^2y^2}{2^2.4^2}=\frac{4}{64}=\frac{1}{16}\)

\(\Rightarrow\begin{cases}x=\pm1\\y=\pm2\end{cases}\)

Mà 2 ; 4 cùng dấu

=> x ; y cùng dấu

Vậy ........

b)

\(4x=7y\)

\(\Rightarrow\frac{x}{7}=\frac{y}{4}\)

\(\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)

\(\Rightarrow\begin{cases}x=\pm14\\y=\pm8\end{cases}\)

Mày 4 và 7 cùng dấu

=> x ; y cùng dấu

Vậy ........

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x-y}{2\cdot3-5}=11\)

Do đó: x=33; y=55

2 tháng 1 2022

\(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x-y}{2.3-5}=\dfrac{11}{1}=11\)

\(\dfrac{x}{3}=11\Rightarrow x=33\\ \dfrac{y}{5}=11\Rightarrow y=55\)

27 tháng 5 2019

\(\frac{x}{y}=\overline{y,x}\Rightarrow\frac{x}{y}=\frac{yx}{10}\)

\(\Rightarrow10x=y^2x\Rightarrow10=y^2\)(chia cả hai vế cho x)

\(\Rightarrow\hept{\begin{cases}y=\sqrt{10}\\y=-\sqrt{10}\end{cases}}\)

Nếu như vậy thì x có vô số nghiệm nhé bạn vì khi thế vào sẽ như thế này

\(\frac{x}{\pm\sqrt{10}}=\frac{\pm\sqrt{10}x}{10}\)

28 tháng 5 2019

\(\frac{x}{y}=\overline{y,x}\)

\(\Leftrightarrow\frac{x}{y}=\frac{xy}{10}\)

\(\Leftrightarrow10x=xy^2\)

\(\Leftrightarrow y^2=10\)

\(\Leftrightarrow y=\pm\sqrt{10}\)

Mà y là số có 1 chữ số ( Vì \(\overline{y,x}\) là số thập phân mà phần nguyên là y có 1 chữ số và phần thập phân là x cũng có 1 chữ số)

Vậy không có x, y thỏa mãn