K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

Từ \(2x=3y\Rightarrow2x-3y=0\)(1)

\(x+y=180\Rightarrow x=180-y\)(2)

Thay (2) vào (1) được

 \(2\left(180-y\right)-3y=0\Leftrightarrow360-2y-3y=0\Leftrightarrow-5y=-360\Leftrightarrow y=72\Rightarrow x=180-72=108\)Vậy x=108, y=72

15 tháng 7 2018

Ta có :2x = 3y và x+y =180

==> x/3=y/2 và x+y=180

Áp Dụng tính chất dãy tỉ số bằng nhau, ta có:

x/3=y/2= x+y/3+2=180/5=36

Ta được: x= 3.36=108

y=2.36=72

Ta có (x + y) - (x - 2y) = 180 - 60

x + y - x + 2y = 120

3y = 120

y = 40

Ta có x + y = 180

\(\Rightarrow\) x = 180 - y = 180 - 40 = 140

x/2 = y/3 = z/6 = 180

=> x = 180 : 2 = 90

     y = 180 : 3 = 60

     z = 180 : 6 = 30

~~~ HT ~~~

2 tháng 7 2015

Theo đề được:

 \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\) và x.y.z=180

=> \(\left(\frac{x}{\frac{1}{2}}\right)^3=\left(\frac{y}{\frac{1}{3}}\right)^3=\left(\frac{z}{\frac{1}{4}}\right)^3=\frac{x.y.z}{\frac{1}{2}.\frac{1}{3}.\frac{1}{4}}=\frac{180}{\frac{1}{24}}=4320\)

Vậy \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\sqrt[3]{4320}\)

=> Không tìm được x,y,z

15 tháng 4 2022

a) \(4x-2=x\)

\(4x-x=2\)

\(3x=2\)

\(x=\dfrac{2}{3}\)

b) Thay \(x=1,y=3\) ta có \(3=a.1\Rightarrow a=3\)

Vậy hàm số cần tìm là \(y=3x\)

c) Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{x+y+z}{1+2+3}=\dfrac{180}{6}=30\)

\(\Rightarrow\left\{{}\begin{matrix}x=30\times1=30\\y=30\times2=60\\z=30\times3=90\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

a. Thay $x=y$ vào điều kiện ban đầu thì:
$x+x=10$

$2x=10$

$x=5$

$\Rightarrow y=x=5$

Vậy $(x,y)=(5,5)$

b. Thay $x=y$ vào điều kiện đầu:
$2x+3x=180$

$5x=180$

$x=36$

$y=x=36$

Vậy $(x,y)=(36,36)$

c. Thay $y=2x$ vào điều kiện đầu thì:

$3x+5.2x=13$

$13x=13$

$x=1$

$y=2x=2$

Vậy $(x,y)=(1,2)$

 

a) Ta có: x=y

mà x+y=10

nên \(x=y=\dfrac{10}{2}=5\)

b) Ta có: \(\left\{{}\begin{matrix}2x+3y=180\\x=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y+3y=180\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=180\\x=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=36\\x=36\end{matrix}\right.\)

c) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+10x=13\\y=2x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}13x=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)