Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)
Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)
b)\(x^2+3y^2+2xy-2y+1=0\)
\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)
nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Mà\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
nên pt vô nghiệm
a: \(x^2+3y^2-4x+6y+7=0\)
\(\Leftrightarrow x^2-4x+4+3y^2+6y+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x,y\right)=\left(-2;1\right)\)
a) 10x(x-y) - 6y(y-x)
= 10x(x-y) +6y ( x-y)
=(10x+6y) (x-y)
b) 3x2 + 5y - 3xy -5x
= 3x(x-y) + 5(y-x)
= 3x(x-y) -5(x-y)
= (3x-5) ( x-y)
c) 3y2 - 3z2 +3x2 + 6xy
=3(y2 - z2 + x2 + 2xy)
=3[(x2 +2xy+y2)-z2 ]
=3[(x+y)2 - z2 ]
=3(x+y-z) (x+y+z)
d) 16x3 + 54y3
=2(8x3 + 27y3 )
=2[(2x)3 + (3y)3 ]
=2(2x+3y) (4x2 - 6xy + 9y2 )
e) x2 - 25 -2xy+y2
=(x2-2xy+y2)-25
=(x-y)2 -52
=(x-y-5) (x-y+5)
f) (mình chưa làm ra )
{mong m.n bổ sung thêm..}
mấy câu trên bạn kia đã trả lời rồi nên mk k làm lại nx
f, x5 - 3x4 + 3x3 - x2
= x2 (x3 - 3x2 + 3x -1)
= x2 (x - 1)3
Chúc bạn học tốt!
\(x^2+3y^2-4x+6y+7=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(3y^2+6y+3\right)=0\\ \Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
\(3x^2+y^2+10x-2xy+26=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{25}{8}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{183}{8}=0\\ \Leftrightarrow x,y\in\varnothing\)
Sửa đề: \(3x^2+6y^2-12x-20y+40=0\)
\(\Leftrightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y+\dfrac{50}{3}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-2\cdot\dfrac{5}{3}y+\dfrac{25}{9}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\\ \Leftrightarrow x,y\in\varnothing\)
\(2\left(x^2+y^2\right)=\left(x+y\right)^2\\ \Leftrightarrow2x^2+2y^2=x^2+2xy+y^2\\ \Leftrightarrow x^2-2xy+y^2=0\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x-y=0\Leftrightarrow x=y\)
a) Ta có: \(M=x^2-2xy+y^2-10x+10y\)
\(=\left(x-y\right)^2-10\left(x-y\right)\)
\(=9^2-10\cdot9=-9\)
\(x^2-2xy+y^2+x^2-10x+25=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-5\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\x-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=5\\x=5\end{cases}}\)
vậy \(y=5\) va\(x=5\)
\(2x^2+y^2-2xy-10x+25=0\)
\(\Leftrightarrow(x^2-2xy+y^2)+\left(x^2-10x+25\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-5\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-5=0\Rightarrow x=5\\x-y=5\Rightarrow y=5\end{cases}}\)