Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5x2 + y2 + 2xy - 6x - 2y - 3 = 0
<=> (x2 + 2xy + y2) - 2(x + y) + 1 + (4x2 - 4x + 1) = 5
<=> (x + y - 1)2 + (2x - 1)2 = 5 = 12 + 22
Do x;y nguyên và 2x - 1 lẻ => 2x - 1 \(\in\){1; -1}
Lập bảng:
x + y - 1 | 2 | 2 | -2 | -2 |
2x - 1 | 1 | -1 | 1 | -1 |
x | ||||
y |
(tự tính)
Bài 1 :
a) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)
Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài 2:
\(2x^2+y^2-2xy+2y-6x+5=0\)
\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)
Vì \(\left(x-y-1\right)^2\ge0\forall x,y\); \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)
Vậy \(x=2\)và \(y=1\)
Lời giải:
Nếu $y=0$ thì $x^2=1$. Khi đó $P=2$
Nếu $y\neq 0$. Đặt $\frac{x}{y}=t$ thì:
$P=\frac{2(x^2+6xy)}{x^2+2xy+3y^2}=\frac{2(t^2+6t)}{t^2+2t+3}$
$P(t^2+2t+3)=2t^2+12t$
$t^2(P-2)+2(P-6)t+3P=0$
$\Delta'=(P-6)^2-3P(P-2)\geq 0$
$\Leftrightarrow (P-3)(P+6)\leq 0$
$\Leftrightarrow -6\leq P\leq 3$ nên $P_{\max}=3$
Vậy $P_{\max}=3$
Giá trị này đạt tại $(x,y)=(\frac{3}{\sqrt{10}}; \frac{1}{\sqrt{10}})$ hoặc $(\frac{-3}{\sqrt{10}}; \frac{-1}{\sqrt{10}})$
(2) có nghiệm khi Delta' lớn hơn hoặc bằng 0
Hơn nữa, công thức Delta' của em bị nhầm.
Phương trình dưới <=> x(3x-y)+2(3x-y)=0 <=> (3x-y)(x+2)=0<=> y=3x hoặc x=-2
+) Với y=3x thế vào phương trình trên ta có:
\(9x^2-2.x.3x=5\Leftrightarrow3x^2=5\)
Em làm tiếp !
+) Với x=-2 thế vào phương trình trên
\(y^2+4y-5=0\)
Em nhớ làm tiếp nhé! Phải chăm học vào!:))