K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

\(x^2+y^2+2xy+2y-2x+5=0\Rightarrow\left(x+y\right)^2+2y-2x+5=0\)

a: =-3x^2y*x^2y+3x^2y*2xy

=-3x^4y^2+6x^3y^2

b: =x^3-x^2y+x^2y+y^2=x^3+y^2

c: =x*4x^3-x*5xy+2x*x

=4x^4-5x^2y+2x^2

d: =x^3+x^2y+2x^3+2xy

=3x^3+x^2y+2xy

14 tháng 9 2016

1. \(x^2+2y^2+2xy-2y+1=0\)

\(\left(x+y\right)^2+y^2-2y+1=0\)

\(\left(x+y\right)^2+\left(y-1\right)^2=0\)

Có: \(\left(x+y\right)^2\ge0;\left(y-1\right)^2\ge0\)

Mà theo bài ra: \(\left(x+y\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

4 tháng 7 2015

Bạn xem ở http://olm.vn/hoi-dap/question/106067.html

4 tháng 7 2015

hoi-dap/question/106067.html

5 tháng 12 2018

Đề sai

11 tháng 7 2017

a/ (x^2-4x+4)+(y^2+2y+1)=0

<=> (x-2x)^2+(y+1)^2 = 0 Vậy x=2 và y = -1

b/ (x^2+2xy+y^2) + ( y^2-2y+1) = 0 

<=> (x+y)^2 + (y-1)^2 = 0 Vậy x=y=1 

12 tháng 7 2017

a) { x^2 - 4x +4 } +{y^2+2x+1}=0

<=>{ x - 2x}^2+{y+1}^2=0 Vậy x =2 vầy =-1

b) { x^2 +2xy +y^2} +{y^2 - 2y +1=0}

<=> {x+y}^2+{ y - 1 }^2 =0 Vậy x=y=1.

NHA BẠN!

23 tháng 7 2017

TA có :

\(H=x^2+2xy+y^2-2x-2y=\left(x^2+y^2+1+2xy-2x-2y\right)-1=\left(x+y-1\right)^2-1\)

Vì  \(\left(x+y-1\right)^2\ge0\) nên \(\left(x+y-1\right)^2-1\ge-1\)

Vậy GTNN của H là -1 khi x+y-1=0 => x+y = 1

23 tháng 7 2017

BẢO HÙNG HÓM HỈNH LỚP TAO LÀM CHO CÒN TAO CHO Ý H

H=\(X^2+2XY+Y^2-2X-2Y\)

H=\(\left(X+Y\right)^2-2\left(X+Y\right)\)

H=\(\left(X+Y\right)^2\)\(-2.\left(X+Y\right).1+1\))-1

H=\(\left(X+Y-1\right)^2-1\)

VẬY GTNN LÀ -1