Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)
Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)
b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)
Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)
Ta có \(\left|y-1\right|+\left|y-2\right|+\left|y-3\right|+1=\left|y-1\right|+\left|y-2\right|+\left|3-y\right|+1\ge2+\left|y-2\right|+1=3+\left|y-2\right|\ge3\)
\(\dfrac{6}{\left(x-1\right)^2+2}\le\dfrac{6}{0+2}=3\)
\(\Leftrightarrow VT\le3\le VP\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\left(y-1\right)\left(3-y\right)\ge0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy PT có nghiệm \(\left(x;y\right)=\left(1;2\right)\)
Tìm x,y biết
\(\dfrac{6}{\left(x-1\right)^2+2}=\left|y-1\right|+\left|y-2\right|+\left|y-3\right|+1\)
Ta có: \(\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\ge\left|x+3+1-x\right|=4\)
\(\left|y-2\right|+\left|y+2\right|=\left|2-y\right|+\left|y+2\right|\ge\left|2-y+y+2\right|=4\)
\(\Rightarrow\dfrac{16}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{16}{4}=4\Rightarrow\left|x+3\right|+\left|x-1\right|\ge\dfrac{6}{\left|y-2\right|+\left|y+2\right|}\)
Dấu '=' xảy ra <=> (x+3)(1-x)\(\ge0\) và (2-y)(y+2)\(\ge0\)
Vì x,y \(\in Z\Rightarrow\left\{{}\begin{matrix}x\in\left\{-3;-2;-2;0;1\right\}\\y\in\left\{-2;-1;0;1;2\right\}\end{matrix}\right.\)
Do \(\left(x-2\right)^2\ge0;\forall x\Rightarrow\dfrac{6}{\left(x-2\right)^2+3}\le\dfrac{6}{0+3}=2\) (1)
\(\left|y-1\right|\ge0;\forall y\Rightarrow\left|y-1\right|+2\ge2\) (2)
Từ (1); (2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{6}{\left(x-2\right)^2+3}=2\\\left|y-1\right|+2=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left|y-1\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Ta có: \(\left(x+y-2\right)^2+7\ge7\Rightarrow\dfrac{14}{\left|y-1\right|+\left|y-3\right|}\ge7\)
\(\Rightarrow\left|y-1\right|+\left|y-3\right|\le2\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left|y-1\right|=0\\\left|y-3\right|=2\end{matrix}\right.\\\left\{{}\begin{matrix}\left|y-1\right|=2\\\left|y-3\right|=0\end{matrix}\right.\\\left|y-1\right|=\left|y-3\right|=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=1\\y=3\\y=2\end{matrix}\right.\Rightarrow}\left[{}\begin{matrix}x=1\\x=-1\\x=0\end{matrix}\right.\)