Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, tìm x,y biết |x-2018|+|y+2019|=0
\(\Rightarrow\hept{\begin{cases}|x-2018|=0\\|y+2019|=0\end{cases}}\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}\)
vậy x=2018 ; y=-2019
a)
ta có \(\hept{\begin{cases}\left|x\right|\ge0\\\left|y+1\right|\ge0\end{cases}}\Rightarrow\left|x\right|+\left|y+1\right|\ge0\Rightarrow A_{min}=0\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
b)
ta có \(\hept{\begin{cases}\left|x-2018\right|\ge0\\\left|y+2019\right|\ge0\end{cases}}\)
mà \(\left|x-2018\right|+\left|y+2019\right|=0\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}}\)
a) Ta có : | 1/2 - x | >= 0 với mọi x
=> 0,6 + | 1/2 - x | >= 0,6 với mọi x
Dấu " = " xảy ra <=> 1/2 - x = 0 => x = 1/2
Vậy,_
b) Ta có : | 2y + 2/3 | >= với mọi x
=> 2/3 - | 2y + 2/3 | < 2/3 với mọi x
Dấu " = " xảy ra <=> 2y + 2/3 = 0 => y = -1/3
Vậy,_
a, Do \(|\frac{1}{2}-x|\)\(\ge\)\(0\)với mọi x \(\Rightarrow\)\(A\ge0,6\)
Dấu bằng xảy ra \(\Leftrightarrow\) \(|\frac{1}{2}-x|=0\Leftrightarrow\frac{1}{2}-x=0\Leftrightarrow x=\frac{1}{2}\)
Vậy GTNN \(A=0,6\Leftrightarrow x=\frac{1}{2}\)
b, Do \(|2y+\frac{2}{3}|\ge0\)với mọi y \(\Rightarrow\) \(B\le\frac{2}{3}\)
Dấu bằng xảy ra \(\Leftrightarrow\)\(|2y+\frac{2}{3}|=0\Leftrightarrow2y+\frac{2}{3}=0\Leftrightarrow2y=\frac{-2}{3}\Leftrightarrow y=\frac{-1}{3}\)
Vậy GTLN \(B=\frac{2}{3}\)\(\Leftrightarrow y=\frac{-1}{3}\)
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.