Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\dfrac{1}{1+x}=1-\dfrac{1}{1+y}+1-\dfrac{1}{1+z}=\dfrac{y}{1+y}+\dfrac{z}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Cmtt: \(\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(1+x\right)\left(1+z\right)}};\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Nhân VTV
\(\Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8\sqrt{\dfrac{x^2y^2z^2}{\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2}}\\ \Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\dfrac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\\ \Leftrightarrow8xyz\le1\Leftrightarrow xyz\le\dfrac{1}{8}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{2}\)
\(2,\\ a,2x^2+y^2-2xy=1\\ \Leftrightarrow\left(x-y\right)^2+x^2=1\\ \Leftrightarrow\left(x-y\right)^2=1-x^2\ge0\\ \Leftrightarrow x^2\le1\Leftrightarrow\sqrt{x^2}\le1\Leftrightarrow\left|x\right|\le1\)
Ta có:
\(x^2+y^2-2xy+2x-4y+15=0\)
\(\Rightarrow\hept{\begin{cases}x^2-\left(2y-2\right)x+y^2-4y+15=0\\y^2-\left(2x+4\right)+x^2+2x+15=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\Delta'_x=\left(y-1\right)^2-\left(y^2-4y+15\right)\ge0\\\Delta'_y=\left(x+2\right)^2-\left(x^2+2x+15\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y\ge7\\x\ge\frac{11}{2}\end{cases}}\)
\(\Rightarrow4x^2+y^2\ge4.\left(\frac{11}{2}\right)^2+7^2=170\)
Dễ thấy dấu = không xảy ra nên
\(\Rightarrow4x^2+y^2>170\)