Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2020=x\Rightarrow2019=x-1\)
Thay vào ta được:
\(D=x^{2020}+\left(x-1\right)^{2019}+\left(x-1\right)^{2018}+...+\left(x-1\right)x+1\)
\(D=x^{2020}+x^{2020}-x^{2019}+x^{2019}-x^{2018}+...+x^2-x+1\)
\(D=2x^{2020}-x+1\)
\(D=2\cdot2020^{2020}-2020+1\)
Bạn xem lại đề nhé
x = 2020 => 2019 = x - 1
Thế vào D ta được
D = x2020 + ( x - 1 )x2019 + ( x - 1 )x2018 + ... + ( x - 1 )x + 1
= x2020 + x2020 - x2019 + x2019 - x2018 + ... + x2 - x + 1
= 2x2020 - x + 1
= 2.20202020 - 2020 + 1
= 2.20202020 - 2019 ( chắc đề sai (: )
\(x\left(x-2018\right)-2019x+2018.2019=0\)
\(\Leftrightarrow x\left(x-2018\right)-2019x+4074342=0\)
\(\Leftrightarrow x^2-2018x-2019x+4074342=0\)
\(\Leftrightarrow x^2-4073x+4074342=0\)
\(\Leftrightarrow\left(x-2018\right)\left(x-2019\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2018=0\\x-2019=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2018\\x=2019\end{cases}}\)
X(X-2018) - (2019X - 2018.2019) = 0
<=> X(X-2018) - 2019(X-2018) = 0
<=> X(X-2018). X(X-2019) = 0
\(\orbr{\begin{cases}X-2018=0\\X-2019=0\end{cases}< =>}\orbr{\begin{cases}X=2018\\X=2019\end{cases}}\)
Với x=2018 thì 2019=x+1
\(\Rightarrow A=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(\Rightarrow A=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(\Rightarrow A=1\)
a, bạn viết thiếu đề
b, \(\Leftrightarrow x\left(x-2018\right)-2019\left(x-2018\right)=0\)
\(\Leftrightarrow\left(x-2019\right)\left(x-2018\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2019=0\\x-2018=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2019\\x=2018\end{cases}}\)
#quankun^^
\(a;x^3-\dfrac{1}{4}x=0\)
\(x\left(x^2-\dfrac{1}{4}\right)=0\)
\(x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
\(b,x^2-10x=-25\)
\(x^2-10x+25=0\)
\(\left(x-5\right)^2=0\)
\(\Rightarrow x=5\)
\(c,x^2-2019x+2018=0\)
\(x^2-x-2018x+2018=0\)
\(x\left(x-1\right)+2018\left(x-1\right)=0\)
\(\left(x+2018\right)\left(x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2018\\x=1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}2018-x=a\\x-2019=b\end{matrix}\right.\) \(\Rightarrow a+b=-1\Rightarrow b=-1-a\)
\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow15a^2+34ab+15b^2=0\)
\(\Leftrightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5a=-3b\\3a=-5b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5a=-3\left(-1-a\right)\\3a=-5\left(-1-a\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2a=3\\2a=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2018-x=\frac{3}{2}\\2018-x=-\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{4033}{2}\\x=\frac{4041}{2}\end{matrix}\right.\)
Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)
Ta có :
Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của là sẽ tìm được nghiệm nguyên của
\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}+\dfrac{x+3}{2018}+\dfrac{x+4}{2017}+4=0\)
⇔ \(\dfrac{x+1}{2020}+1+\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1+\dfrac{x+4}{2017}+1=0\)
\(\Leftrightarrow\) \(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}=0\)
⇔ \(\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)=0\)
\(Do\) \(\left(\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)\ne0\)
⇒ \(x+2021=0\)
⇔ \(x=-2021\)
\(Vậy\) \(x=-2021\)
\(x\left(x-2018\right)-2019x+2018\cdot2019=0\)
\(x\left(x-2018\right)-2019\left(x-2018\right)=0\)
\(\left(x-2018\right)\left(x-2019\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2018=0\\x-2019=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2018\\x=2019\end{matrix}\right.\)
Bạn giỏi quá😍😍😍😍