Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2\left(x-1\right)^2+\left(x+3\right)^2=3\left(x-2\right)\left(x+1\right)\)
\(\Leftrightarrow2x^2-4x+2+x^2+6x+9=3x^2+3x-6x-6\)
\(\Leftrightarrow3x^2+2x+11=3x^2-3x-6\)
\(\Leftrightarrow5x+17=0\Leftrightarrow x=-\frac{17}{5}\)
b, \(\left(x+2\right)^2\left(x-3\right)=\left(x+1\right)^2\)
\(\Leftrightarrow x^3-3x^2+4x^2-12x+4x-12=x^2+2x+1\)
\(\Leftrightarrow x^3-8x-12=2x+1\)
\(\Leftrightarrow x^3-10x-13=0\)
\(\Leftrightarrow x\left(x^2-10\right)=13\)Lập bảng nhé, thú thật cái này phần này ko chắc:)
a) 2( x - 1 )2 + ( x + 3 )2 = 3( x - 2 )( x + 1 )
<=> 2( x2 - 2x + 1 ) + x2 + 6x + 9 = 3( x2 - x - 2 )
<=> 2x2 - 4x + 2 + x2 + 6x + 9 - 3x2 + 3x + 6 = 0
<=> 5x + 17 = 0
<=> 5x = -17
<=> x = -17/5
b) ( x + 2 )2( x - 3 ) = ( x + 1 )2
<=> ( x2 + 4x + 4 )( x - 3 ) = x2 + 2x + 1
<=> x3 + x2 - 8x - 12 - x2 - 2x - 1 = 0
<=> x3 - 10x - 13 = 0
Gồi đến đây chịu :) Chắc đề sai chỗ nào đấy
\(5,\dfrac{4}{x-2}+\dfrac{x}{x+1}-\dfrac{x^2-2}{\left(x-2\right)\left(x+1\right)}=0\left(dkxd:x\ne2;-1\right)\)
\(\Rightarrow4\left(x+1\right)+x\left(x-2\right)-x^2-2=0\)
\(\Rightarrow4x+4+x^2-2x-x^2-2=0\)
\(\Rightarrow2x+2=0\)
\(\Rightarrow x=-1\left(loai\right)\)
Vậy \(S=\varnothing\)
`P=((3+x)/(3-x)-(3-x)/(3+x)+(4x^2)/(x^2-9)):((2x+1)/(x+3)-1)`
`=((4x^2-(3-x)^2-(3+x)^2)/(x^2-9)):((2x+1-x-3)/(x+3))`
`=((4x^2-x^2+6x-9-x^2-6x-9)/(x^2-9)):((x-2)/(x+3))`
`=((2x^2-18)/(x^2-9))*(x+3)/(x-2)`
`=((2(x^2-9))/(x^2-9))*(x+3)/(x-2)`
`=(2x+6)/(x-2)`
ĐKXĐ: \(x\ne\pm3;x\ne-\dfrac{1}{2};x\ne2\)
\(P=\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{4x^2}{\left(3-x\right)\left(3+x\right)}\right):\dfrac{2x+1-x-3}{x+3}\)
\(=\dfrac{\left(3+x\right)^2-\left(3-x\right)^2-4x^2}{\left(3+x\right)\left(3-x\right)}:\dfrac{x-2}{x+3}\)
\(=\dfrac{\left(3+x-3+x\right)\left(3+x+3-x\right)-4x^2}{\left(x+3\right)\left(3-x\right)}.\dfrac{x+3}{x-2}\)
\(=\dfrac{12x-4x^2}{3-x}\cdot\dfrac{1}{x-2}\)
\(=\dfrac{4x\left(3-x\right)}{3-x}\cdot\dfrac{1}{x-2}\) \(=\dfrac{4x}{x-2}\)
a, \(A=x^2+2\cdot\frac{1}{2}x+\frac{1}{4}-\frac{9}{4}=\left(x+\frac{1}{2}\right)^2-\frac{9}{4}\)
=> \(A\ge-\frac{9}{4}\) dấu = xảy ra khi : \(x=\frac{-1}{2}\)
Dạo này lười viết đề :(((
a, \(\Leftrightarrow4x^2+12x+9-x^2+2x-1=0\)
\(\Leftrightarrow3x^2+14x+8=0\)
\(\Leftrightarrow\left(3x^2+12x\right)+\left(2x+8\right)=0\)
\(\Leftrightarrow3x\left(x+4\right)+2\left(x+4\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x+4\right)=0\)
⇔ \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-4\end{matrix}\right.\)
b, \(\Leftrightarrow x\left(9-x^2\right)+x^3-3x^2+3x-1=-1\)
\(\Leftrightarrow9x-x^3+x^3-3x^2+3x=0\)
\(\Leftrightarrow12x-3x^2=0\)
\(\Leftrightarrow4x-x^2=0\)
\(\Leftrightarrow x\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(a,\Leftrightarrow\left(5x+1\right)\left(x-4\right)-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(5x+1-x\right)=0\\ \Leftrightarrow5x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x^2-10x-2x^2-3x=26\\ \Leftrightarrow-13x=26\\ \Leftrightarrow x=-2\\ c,\Leftrightarrow x^3+1-x^3+3x=15\\ \Leftrightarrow3x=14\\ \Leftrightarrow x=\dfrac{14}{3}\)
\(d,\Leftrightarrow x^3-5x+2x^2-10+5x-2x^2-17=0\\ \Leftrightarrow x^3-27=0\\ \Leftrightarrow x^3=27\\ \Leftrightarrow x=3\)