Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\left(2x-3\right)\left(x+1\right)+\left(2x-3\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x+1+3x-7\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\4x-6=0\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{3}{2}\)
b. \(\left(x-4\right)\left(3x-2\right)+x^2-16=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x-2\right)+\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x-2+x+4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{1}{2}\end{matrix}\right.\)
(2x-3)(x+1)+(2x+3)(3x-7)=0
<=> (2x-3)(x+1)-(2x-3)(3x-7)=0
<=> (2x-3)(x+1-3x+7)=0
<=> (2x-3)(-2x+8)=0
<=> 2x-3=0 => x=3/2
Hoặc -2x+8=0 => x= 4
Vậy x thuộc{3/2;4}
( x2 - 4x + 16 )( x + 4 ) - x( x + 1 )( x + 2 ) + 3x2 = 0
<=> x3 + 43 - x( x2 + 3x + 2 ) + 3x2 = 0
<=> x3 + 64 - x3 - 3x2 - 2x + 3x2 = 0
<=> 64 - 2x = 0
<=> 2x = 64
<=> x = 32
( 8x + 2 )( 1 - 3x ) + ( 6x - 1 )( 4x - 10 ) = -50
<=> 2x - 24x2 + 2 + 24x2 - 64x + 10 = -50
<=> -62x + 12 = -50
<=> -62x = -62
<=> x = 1
x2-8x=-16
<=>\(x^2-8x+16=0\)
<=> \(\left(x-4\right)^2=0\)
<=>\(x-4=0\)
<=>\(x=4\)
Ta có: để phép chia x2+16 cho x+3 đạt giá trị nguyên thì:
\(x^2+16⋮\left(x+3\right)\)
Ta có: \(x^2+16⋮\left(x+3\right)\)
\(\Leftrightarrow x^2-9+25⋮\left(x+3\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+25⋮\left(x+3\right)\)
Mà vì \(\left(x+3\right)⋮\left(x+3\right)\) nên\(\left(x-3\right)\left(x+3\right)⋮\left(x+3\right)\)
Suy ra \(25⋮\left(x+3\right)\)
\(\Rightarrow x+3\inƯ\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)
TH1: \(x+3=\pm1\Leftrightarrow\left[{}\begin{matrix}x+3=1\\x+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
TH2:\(x+3=\pm5\Leftrightarrow\left[{}\begin{matrix}x+3=5\\x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
TH3:\(x+3=\pm25\Leftrightarrow\left[{}\begin{matrix}x+3=25\\x+3=-25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=22\\x=-28\end{matrix}\right.\)
Vậy \(x\in\left\{-2;-4;2;-8;22;-28\right\}\)
\(16-5x^2-3=0\)
\(\Leftrightarrow16-5x^2=0+3\)
\(\Leftrightarrow16-5x^2=3\)
\(\Leftrightarrow5x^2=16-3\)
\(\Leftrightarrow5x^2=13\)
\(\Leftrightarrow x^2=\frac{13}{5}\)
\(\Leftrightarrow x^2=2,6\)
\(\Leftrightarrow1,61\approx1,6\)
\(\Rightarrow x=1,6\)
\(16-5x^2-3=0\)
\(\Leftrightarrow16-5x^2=3\)
\(\Leftrightarrow5x^2=16-3\)
\(\Leftrightarrow5x^2=13\Leftrightarrow x^2=\frac{13}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=\sqrt{\frac{13}{5}}\\x=-\sqrt{\frac{13}{5}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{65}}{5}\\x=-\frac{\sqrt{65}}{5}\end{cases}}\)
a) x2+8x+16-x2+1=16
8x+17=16
8x=-1
x=-1/8
b) 4x2-4x+1+x2+6x+9-5x2+245=0
2x+255=0
x=-255/2
\(\left(x^2+16\right)^2-\left(16+1\right)^2=0\)
\(\Rightarrow\left(x^2+16-16-1\right)\left(x^2+16+16+1\right)=0\)
\(\Rightarrow\left(x^2-1\right)\left(x^2+33\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+1\right)\left(x^2+33\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x^2+33=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\\x^2=-33\left(loai\right)\end{matrix}\right.\)