Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left|\dfrac{5}{3}x\right|=\dfrac{1}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}x\cdot\dfrac{5}{3}=\dfrac{1}{6}\\x\cdot\dfrac{5}{3}=-\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}:\dfrac{5}{3}=\dfrac{3}{30}=\dfrac{1}{10}\\x=-\dfrac{1}{10}\end{matrix}\right.\)
b: \(\Leftrightarrow\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|=\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{3}{2}\)
\(\Leftrightarrow\left|x-1\right|=\dfrac{3}{2}:\dfrac{3}{4}=2\)
=>x-1=2 hoặc x-1=-2
=>x=3 hoặc x=-1
c: \(\Leftrightarrow\left|x+\dfrac{3}{5}\right|=\left|x-\dfrac{7}{3}\right|\)
\(\Leftrightarrow x+\dfrac{3}{5}=\dfrac{7}{3}-x\)
=>2x=44/15
hay x=22/15
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
a: \(Q=-\dfrac{7}{12}xy^2+\dfrac{4}{3}x-\dfrac{1}{2}x^2y-1\)
\(A=x^2y-3x+1-\dfrac{7}{12}xy^2+\dfrac{4}{3}x-\dfrac{1}{2}x^2y-1=\dfrac{1}{2}x^2y-\dfrac{7}{12}xy^2-3x\)
b: \(P=\dfrac{3}{4}xy^2+\dfrac{4}{9}x-\dfrac{7}{12}xy^2+\dfrac{4}{3}x-\dfrac{1}{2}x^2y-1=\dfrac{1}{6}xy^2+\dfrac{16}{9}x-\dfrac{1}{2}x^2y-1\)
Bài 2:
a: =>2/3x=3/4+1/2=3/4+2/4=5/4
=>x=5/4:2/3=5/4*3/2=15/8
b:=>-2x+4=3x-12
=>-5x=-16
=>x=16/5
a,3/4 . (-5/12)+3/4.(-7/12)
` 3/4 . [ - ( 5/12 + 7/12 ) ] `
`3/4 . (-1) = -3/4 `
`2/3 . x - 0,5 = 3/4 `
` x - 0,5 = 3/4 - 2/3 `
` x-0,5 = 1/12 `
` x = 1/12 + 0,5 `
` x= 7/12 `
\(\dfrac{3}{x-4}=\dfrac{x+4}{3}\left(đk:x\ne4\right)\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)=3.3\)
\(\Leftrightarrow x^2-16=9\Leftrightarrow x^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Đề vậy sao giải được bạn ơi
\(\left(x-3\right)^3=\left(x-4\right)^4\)
Để \(\left(x-3\right)^3=\left(x-4\right)^4\)thì
Ta có 2 trường hợp
\(\hept{\begin{cases}x-3=0;x-4=0\left(th1\right)\\x-3=1;x-4=1\left(th2\right)\end{cases}}\)
\(\left(th1\right)\Leftrightarrow\hept{\begin{cases}x-3=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\x=4\end{cases}}}\)
\(\left(th2\right)\Leftrightarrow\hept{\begin{cases}x-3=1\\x-4=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\x=5\end{cases}}}\)
Vậy \(x\in\left\{3;4;5\right\}\)