Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 2 Th | x-2| , (x-y+1)^2 =0
| x-2| , (x-y+1)^2 là hai số đối ; lx-2/ nguyên dương => ( x - y + 1 )^2 là số nguyên âm
TH1 | x-2| , (x-y+1)^2 =0
=> x = 2 để /x-2/ = 0
thay vào bên kia ta có : ( 2 - y + 1 ) ^2 = 0 => 2 - y + 1 = 0 => 3 - y = 0 => y = 3
TH2 : Tự xét nha bn
a)=>x-1;x-3 \(\in\)Ư(-5)={-1;-5;1;5}
còn lại thử từng TH nhé
b)\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
c)=>x2-4;x2-19 trái dấu
Ta có:x^2-4-(x^2-19)=x^2-4-x^2+19=15 >0
\(\Rightarrow\orbr{\begin{cases}x^2-4>0\\x^2-19< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x^2>4\\x^2< 19\end{cases}}\)
Ta có:4<x^2<19
=>x^2\(\in\){9;16}
=>x\(\in\){3;4}
(x - 3).(x + 2) < 0
=> x - 3 và x + 2 trái dấu
Mà x + 2 > x - 3
=> x + 2 > 0 => x > -2
x - 3 < 0 => x < 3
=> -2 < x < 3, mà x thuộc Z => x \(\in\) {-1;0;1;2}
Ta có: (x-2)(y+12)<0
nên x-2;y+12 khác dấu
Trường hợp 1: \(\left\{{}\begin{matrix}x-2>0\\y+12< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\y< -12\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x-2< 0\\y+12>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\y>-12\end{matrix}\right.\)
a) 7x=14
x = 14 : 7
x = 2
b ) 6x - (-5) = 17
6x = 17+(-5)
6x = 12
x = 12 :6
x = 2
c) (x+2) ( x-9) = 0
=> x +2 = 0 hoặc x-9=0
=> x= -2 => x=9
mình làm rùi , đi
x + 5 chia hết cho x - 2
=> x + 5 = x - 2 + 7
ta có : x - 2 chia hết cho x - 2 nên để x + 5 chia hết cho x - 2 thì 7 phải chia hết cho x - 2
=> x - 2 \(\in\)Ư ( 7 ) = { 1 ; 7 ; -1 ; -7 }
Lập bảng ta có :
x - 2 | 1 | 7 | -1 | -7 |
x | 3 | 9 | 1 | 5 |
Vậy x = { 3 ; 9 ; 1 ; 5 }
\(\left(x-5\right)^2=0\)
\(\Rightarrow x-5=0\)
\(\Rightarrow x=0+5\)
\(\Rightarrow x=5\)
Vậy x=5
(x - 5)2 = 0
=> (x - 5)2 = 02
=> x - 5 = 0
=> x = 0 + 5
=> x = 5
Vậy x = 5