Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
a) 7.x - x = 521 : 519 + 3.22 - 70
6x = 25 + 12 - 1
6x = 36
x = 6
b) 7x - 2x = 617 : 615 + 44 : 11
5x = 36 + 4
5x = 40
x = 8
c) 5x + x = 39 - 311 : 39
6x = 39 - 9
6x = 30
x = 5
d) [(6x - 39) : 7]. 4 = 12
(6x - 39) : 7 = 12 : 4
(6x - 39) : 7 = 3
6x - 39 = 3 . 7
6x - 39 = 21
6x = 21 + 39
6x = 60
x = 10
x =
1) \(2^x-15=17\)
\(\Leftrightarrow2^x=32=2^5\)
\(\Rightarrow x=5\)
2) \(\left(7x-11\right)^3=25\cdot5^2+200\)
\(\Leftrightarrow\left(7x-11\right)^3=825\)
\(\Leftrightarrow7x-11=\sqrt[3]{825}\)
\(\Leftrightarrow7x=11+\sqrt[3]{825}\)
\(\Rightarrow x=\frac{11+\sqrt[3]{825}}{7}\)
3) \(\left(x+1\right)^{100}-3\left(x+1\right)^{99}=0\)
\(\Leftrightarrow\left(x+1\right)^{99}\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)^{99}=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
4) \(4x+5\left(x+3\right)=105\)
\(\Leftrightarrow9x+15=105\)
\(\Leftrightarrow9x=90\)
\(\Rightarrow x=10\)
5) \(5\cdot\left(x-2\right)+10\left(x+3\right)=170\)
\(\Leftrightarrow5\left[x-2+2\left(x+3\right)\right]=170\)
\(\Leftrightarrow3x+4=34\)
\(\Leftrightarrow3x=30\)
\(\Rightarrow x=10\)
Bài 1
a) \(x=x^5\)
\(x^5-x=0\)
\(x\left(x^4-1\right)=0\)
\(x=0\) hoặc \(x^4-1=0\)
* \(x^4-1=0\)
\(x^4=1\)
\(x=1\)
Vậy x = 0; x = 1
b) \(x^4=x^2\)
\(x^4-x^2=0\)
\(x^2\left(x^2-1\right)=0\)
\(x^2=0\) hoặc \(x^2-1=0\)
*) \(x^2=0\)
\(x=0\)
*) \(x^2-1=0\)
\(x^2=1\)
\(x=1\)
Vậy \(x=0\); \(x=1\)
c) \(\left(x-1\right)^3=x-1\)
\(\left(x-1\right)^3-\left(x-1\right)=0\)
\(\left(x-1\right)\left[\left(x-1\right)^2-1\right]=0\)
\(x-1=0\) hoặc \(\left(x-1\right)^2-1=0\)
*) \(x-1=0\)
\(x=1\)
*) \(\left(x-1\right)^2-1=0\)
\(\left(x-1\right)^2=1\)
\(x-1=1\) hoặc \(x-1=-1\)
**) \(x-1=1\)
\(x=2\)
**) \(x-1=-1\)
\(x=0\)
Vậy \(x=0\); \(x=1\); \(x=2\)
\(a,\left(x+17\right).\left(5-x\right)=0\)
<=>\(\orbr{\begin{cases}x+17=0\\5-x=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=-17\\x=5\end{cases}}\)
\(b,x^2+4.\left(-2\right)=9\)
<=>\(x^2-8=9\)
<=>\(x^2=17\)
<=>\(x=\sqrt{17}\)
a)\(\left(x+17\right)\left(5-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+17=0\\5-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-17\\x=5\end{cases}}}\)
vậy x=-17 hoặc x=5
b) \(x^2+4.\left(-2\right)=9\)
\(x^2+\left(-8\right)=9\)
\(x^2=17\)
\(\Rightarrow x=\sqrt{17}\)
c)\(0< |x-3|< 5\)
\(\Rightarrow|x-3|=1=2=3=4\)
\(th1\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}}\)
\(th2\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}}\)
\(th3\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=0\end{cases}}}\)
\(th4\orbr{\begin{cases}x-3=4\\x-3=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-1\end{cases}}}\)
vậy...