Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)và\(3n+2\)là nguyên tố cùng nhau
\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)
câu 1 :
gọi d = ƯCLN ( 2n + 1; 3n +2 )
=> 2n + 1 chia hết cho d => 3 ( 2n +1 ) chia hết cho d
3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d
ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4 - [ 6n + 3 ] chia hết cho d
=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau
=> \(\frac{2n+1}{3n+2}\) là phân số tối giản
a) Để \(A=\frac{3x+2}{x+1}\) là số nguyên thì:
\(3x+2⋮x+1\)
Ta có: 3x + 2 = 3(x + 1) - 1
mà 3x + 2 \(⋮\)x+1 => 3(x + 1) - 1\(⋮\)x + 1
có x + 1 \(⋮\)x+1 => -1 \(⋮\)x+1 hay x + 1 \(\in\)Ư(-1) = {1;-1}
Ta có bảng sau:
x+1 | 1 | -1 |
x | 0 | -2 |
Vậy để \(A=\frac{3x+2}{x+1}\) là số nguyên thì x = 0 hoặc x = 2
b) Gọi ƯCLN(3n + 2, 2n + 1) = d (d \(\in\)N)
\(=>\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\)
\(=>\hept{\begin{cases}2\left(3n+2\right)⋮d\\3\left(2n+1\right)⋮d\end{cases}}\)
\(=>\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)
\(=>\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(=>1⋮d\) \(=>d=1\)
Vậy phân số \(B=\frac{3n+2}{2n+1}\) là phân số tối giản
a, Gọi UCLN(2n+1, 3n+2) là d. Ta có:
2n+1 chia hết cho d=> 6n+3 chia hết cho d
3n+2 chia hết cho d=> 6n+4 chia hết cho d
=> 6n+4 - (6n+3) chia hết cho d
=> 1 chia hết cho d
=>ƯCLN(2n+1,3n+2)=1
=>\(\frac{2n+1}{3n+2}\)tối giản(đpcm)