Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có:x> hoặc = 2018
=>2018+2018-x=x
=>2x=2018*2
=>x=2018
a) Ta có:\(8\left(x-2019\right)^2⋮8\Rightarrow25-y^2⋮8\)\(\left(1\right)\)
Mặt khác: \(8\left(x-2019\right)^2\ge0\Rightarrow25-y^2\ge0\)\(\left(2\right)\)
Từ\(\left(1\right),\left(2\right)\)ta có: \(y^2=1;9;25\)
Xét:\(y^2=1\Rightarrow8\left(x-2019\right)^2=24\Rightarrow\left(x-2019\right)^2=3\left(ktm\right)\)
\(y^2=9\Rightarrow8\left(x-2019\right)^2=16\Rightarrow\left(x-2019\right)^2=2\left(ktm\right)\)
\(y^2=25\Rightarrow8\left(x-2019\right)^2=0\Rightarrow\left(x-2019\right)^2=0\Rightarrow x-2019=0\Rightarrow x=2019\left(tm\right)\)
Vậy \(y=5;x=2019\)
\(y=-5;x=2019\)
\(\left(24-4y\right)^{2018}+\left|x^2-4\right|^{2019}\le0\left(1\right)\)
Vì \(\hept{\begin{cases}\left(24-4y\right)^{2018}\ge0;\forall x,y\\\left|x^2-4\right|^{2019}\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(24-4y\right)^{2018}+\left|x^2-4\right|^{2019}\ge0;\forall x,y\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}\left(24-4y\right)^{2018}=0\\\left|x^2-4\right|^{2019}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=6\\x=\pm2\end{cases}}\)
Vậy \(\left(x,y\right)\in\left\{\left(2;6\right);\left(-2;6\right)\right\}\)
*Nếu \(x\le2018\)ta đc
\(2018+2018-x=x\)
\(\Leftrightarrow2x=2.2018\)
\(\Leftrightarrow x=2018\)(Thỏa mãn khoảng đag xét )
*Nếu \(2018< x\le2020\)ta đc
\(2018+x-2018=x\)
\(\Leftrightarrow x=x\)
Ta luôn tìm đc x trong khoảng \(2018< x\le2020\)
Mà \(x\inℤ\Rightarrow x\in\left\{2019;2020\right\}\)
Vậy \(x\in\left\{2018;2019;2020\right\}\)
\(2018+\left|2018-x\right|=x\)\(\Leftrightarrow\)\(\left|2018-x\right|=x-2018\)
+) Với \(\hept{\begin{cases}2018-x\ge0\\x\le2020\end{cases}\Leftrightarrow x\le2018}\) ta có :
\(2018-x=x-2018\)\(\Leftrightarrow\)\(x=2018\) ( nhận )
+) Với \(\hept{\begin{cases}2018-x< 0\\x\le2020\end{cases}\Leftrightarrow2018< x\le2020}\) ta có :
\(-\left(2018-x\right)=x-2018\)\(\Leftrightarrow\)\(x=x\) ( đúng với mọi \(2018< x\le2020\) )
Từ 2 trường hợp trên ta suy ra \(2018\le x\le2020\)
Mà \(x\inℤ\) nên \(x\in\left\{2018;2019;2020\right\}\)
Vậy \(x\in\left\{2018;2019;2020\right\}\)
tham khảo nhé :> nhớ cảm ơn nhẹ cái cho có động lực cứu nhân độ thế :v
Ta có:|2018-x|=2018-x<=>\(2018-x\ge0\Leftrightarrow2018\ge x\)
\(\left|2018-x\right|=x-2018\Leftrightarrow x-2018< 0\Leftrightarrow x< 2018\)
Với \(x\le2018\),thì:
\(2018+\left|2018-x\right|=x\)
\(\Rightarrow2018+2018-x=x\)
\(\Rightarrow x=2018\)
Với:\(\left|2018-x\right|=x-2018\)
\(\Rightarrow2018+\left|2018-x\right|=x\)
....