K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2018+\left|2018-x\right|=x\)\(\Leftrightarrow\)\(\left|2018-x\right|=x-2018\)

+) Với \(\hept{\begin{cases}2018-x\ge0\\x\le2020\end{cases}\Leftrightarrow x\le2018}\) ta có : 

\(2018-x=x-2018\)\(\Leftrightarrow\)\(x=2018\) ( nhận ) 

+) Với \(\hept{\begin{cases}2018-x< 0\\x\le2020\end{cases}\Leftrightarrow2018< x\le2020}\) ta có : 

\(-\left(2018-x\right)=x-2018\)\(\Leftrightarrow\)\(x=x\) ( đúng với mọi \(2018< x\le2020\) ) 

Từ 2 trường hợp trên ta suy ra \(2018\le x\le2020\)

Mà \(x\inℤ\) nên \(x\in\left\{2018;2019;2020\right\}\)

Vậy \(x\in\left\{2018;2019;2020\right\}\)

tham khảo nhé :> nhớ cảm ơn nhẹ cái cho có động lực cứu nhân độ thế :v 

24 tháng 12 2018

Ta có:|2018-x|=2018-x<=>\(2018-x\ge0\Leftrightarrow2018\ge x\)

\(\left|2018-x\right|=x-2018\Leftrightarrow x-2018< 0\Leftrightarrow x< 2018\)

Với \(x\le2018\),thì:

\(2018+\left|2018-x\right|=x\)

\(\Rightarrow2018+2018-x=x\)

\(\Rightarrow x=2018\)

Với:\(\left|2018-x\right|=x-2018\)

\(\Rightarrow2018+\left|2018-x\right|=x\)

....

26 tháng 12 2018

Theo bài ra ta có:x> hoặc = 2018
=>2018+2018-x=x
=>2x=2018*2
=>x=2018

21 tháng 12 2018

tao chịu

21 tháng 12 2018

Tao cũng chịu thôi

9 tháng 9 2016

khocroi

a) Ta có:\(8\left(x-2019\right)^2⋮8\Rightarrow25-y^2⋮8\)\(\left(1\right)\)

Mặt khác: \(8\left(x-2019\right)^2\ge0\Rightarrow25-y^2\ge0\)\(\left(2\right)\)

Từ\(\left(1\right),\left(2\right)\)ta có: \(y^2=1;9;25\)

Xét:\(y^2=1\Rightarrow8\left(x-2019\right)^2=24\Rightarrow\left(x-2019\right)^2=3\left(ktm\right)\)

\(y^2=9\Rightarrow8\left(x-2019\right)^2=16\Rightarrow\left(x-2019\right)^2=2\left(ktm\right)\)

\(y^2=25\Rightarrow8\left(x-2019\right)^2=0\Rightarrow\left(x-2019\right)^2=0\Rightarrow x-2019=0\Rightarrow x=2019\left(tm\right)\)

Vậy \(y=5;x=2019\)

\(y=-5;x=2019\)

12 tháng 1 2020

\(\left(24-4y\right)^{2018}+\left|x^2-4\right|^{2019}\le0\left(1\right)\)

Vì \(\hept{\begin{cases}\left(24-4y\right)^{2018}\ge0;\forall x,y\\\left|x^2-4\right|^{2019}\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(24-4y\right)^{2018}+\left|x^2-4\right|^{2019}\ge0;\forall x,y\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}\left(24-4y\right)^{2018}=0\\\left|x^2-4\right|^{2019}=0\end{cases}}\)

                      \(\Leftrightarrow\hept{\begin{cases}y=6\\x=\pm2\end{cases}}\)

Vậy \(\left(x,y\right)\in\left\{\left(2;6\right);\left(-2;6\right)\right\}\)

24 tháng 12 2018

*Nếu \(x\le2018\)ta đc

\(2018+2018-x=x\)

\(\Leftrightarrow2x=2.2018\)

\(\Leftrightarrow x=2018\)(Thỏa mãn khoảng đag xét )

*Nếu \(2018< x\le2020\)ta đc

\(2018+x-2018=x\)

\(\Leftrightarrow x=x\)                                 

Ta luôn tìm đc x trong khoảng \(2018< x\le2020\)

Mà \(x\inℤ\Rightarrow x\in\left\{2019;2020\right\}\)

Vậy \(x\in\left\{2018;2019;2020\right\}\)