Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)
Ta có \(\frac{2}{3}-\frac{1}{3}.\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5.\)
\(\Rightarrow\frac{2}{3}-\frac{1}{3}.x+\frac{1}{3}.\frac{3}{2}-\frac{1}{2}.2x-\frac{1}{2}=5\)
\(\Rightarrow\frac{2}{3}-\frac{x}{3}+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\Rightarrow\frac{4}{6}-\frac{2x}{6}+\frac{3}{6}-\frac{6x}{6}-\frac{3}{6}=\frac{30}{6}\)
\(\Rightarrow4-2x+3-6x-3=30\)
\(\Rightarrow4-8x=30\)
\(\Rightarrow-8x=26\)
\(\Rightarrow x=\frac{26}{-8}=-\frac{13}{4}\)
Vậy \(x=-\frac{13}{4}\)
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
a) (x-1):2/3=-2/5
=>x-1=-4/15
=>x=11/15
b) |x-1/2|-1/3=0
=>|x-1/2|=1/3
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\)
c) Tương Tự câu B
Chỗ dấu "..." bạn không cần ghi.Mình viết vậy cho dễ nhìn. Bài này có một lời giải khá độc đáo trong sách nâng cao của mình.
a) Số thừa số âm ở VT chẵn.
Mà \(x-\frac{2}{5}< x+\frac{3}{7}< x+\frac{3}{4}\) nên
\(\orbr{\begin{cases}x-\frac{2}{5}>0\\x+\frac{3}{7}< 0..và...x+\frac{3}{4}>0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\x< -\frac{3}{7}...và...x>-\frac{3}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\-\frac{3}{4}< x< -\frac{3}{7}\end{cases}}}\)
câu còn lại bạn làm tương tự nhé :))
a) Với \(x\le-1\)thì \(x+1\le0;x-2\le0\Rightarrow\left(x+1\right)\left(x-2\right)\ge0;\)Loại \(x\le-1\)
Với \(x\ge2\)thì \(x+1\ge0;x-2\ge0\Rightarrow\left(x+1\right)\left(x-2\right)\ge0;\)Loại \(x\ge2\)
Với \(-1< x< 2\)thì \(x+1>0;x-2< 0\Rightarrow\left(x+1\right)\left(x-2\right)< 0;\)TMĐK.
Vậy \(-1< x< 2\)và \(x\in Q\)là nghiệm của a).
b) Tương tự, có \(\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\)và \(x\in Q\)là nghiệm của b).