Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)
\(=>\frac{y-x}{xy}=\frac{1}{xy}\)
\(=>xy^2-x^2y=xy\)
\(=>xy^2-x^2y-xy=0\)
\(=>x.\left(y^2-xy-y\right)=0\)
\(=>\orbr{\begin{cases}x=0\\y^2-xy-y=0\end{cases}}\)
Ta thấy \(y^2-xy-y=0\)
\(=>y.\left(y-x-y\right)=0\)
\(=>\orbr{\begin{cases}y=0\left(2\right)\\y-y=0\end{cases}}\)
Từ 1 và 2 => x = y = 0
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)
\(\Rightarrow\frac{y-x}{xy}=\frac{1}{xy}\)
\(\Rightarrow y-x=1\)
Vậy x,y có dạng \(\hept{\begin{cases}x=y-1\\y=x+1\end{cases}}\)với \(y\ne1;x\ne-1;x\ne0;y\ne0\)
a: Ta có: \(\left(x-\dfrac{2}{5}\right)\left(x+\dfrac{2}{7}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{2}{5}\\x< -\dfrac{2}{7}\end{matrix}\right.\)
\(a,x=\dfrac{18}{z};y=10\Leftrightarrow x:y=\dfrac{18}{z}:10=\dfrac{9}{5z}=9:5z\)
\(b,y=x:\dfrac{9}{5z}=\dfrac{9}{5xz}\)
\(c,x=-2\Leftrightarrow z=-9\Leftrightarrow y=\dfrac{9}{5\cdot\left(-9\right)\cdot\left(-2\right)}=\dfrac{1}{10}\\ x=\dfrac{1}{5}\Leftrightarrow z=90\Leftrightarrow y=\dfrac{9}{5\cdot\dfrac{1}{5}\cdot90}=\dfrac{1}{10}\)
a, A lớn nhất khi 7x la nguyên dương nho nhất
\(\Rightarrow7x=1\)
\(\Rightarrow x=\frac{1}{7}\)
\(b,B=\frac{10+4-x}{4-x}\)
\(B=\frac{10}{4-x}+1\)
b lon nhat khi 4-xla nguyen duong nho nhat
\(\Rightarrow4-x=1\)
\(\Rightarrow x=4-1=3\)
\(c,C=\frac{27-2x}{12-x}=\frac{3+24-2x}{12-x}=\frac{3}{12-x}+2\)
c lon nhat khi 12-x la nguyen duong nho nhat
\(\Rightarrow12-x=1\Rightarrow x=11\)
a)Có y = f(x) = -0,5x
=> f(2) = -0,5 . 2 = -1
f(4) = -0,5 . 4 = -2
f(0) = -0,5 . 0 = 0
b)Với y = -1
=> -1 = -0,5.x
=> x = -1 : -0,5 = 2
Với y = 0
=>0 = -0,5.x
=> x = 0 : -0,5 = 0
Với y = 2,5
=>2,5 = -0,5.x
=>x = 2,5 : -0,5 = -5
\(3^x+3^{x+2}=7290\)
\(3^x+3^x.3^2=7290\)
\(3^x.\left(1+9\right)=7290\)
\(3^x.10=7290\)
\(\Rightarrow3^x=729\)
\(\Rightarrow x=6\)
\(3^x+3^{x+2}=7290\Rightarrow3^x.\left(1+3^2\right)=7290\Rightarrow3^x=729=3^6\Rightarrow x=6\)
a) x.x=x
=>x=1
b)x.|x|=x
=>x=1
c)|x-1|=x
=>x không tồn tại
d)|x+1|=x
=>x không tồn tại