K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2016

<=>2-2/3+2/3-2/5........+2n-2n+2<2015/2016

<=>2-2n+2<2015/2016

=>n+2=1/2016

=>n=2014

21 tháng 3 2016

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{n\left(n+2\right)}\)<\(\frac{2015}{2016}\)

VT=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{5}-\frac{1}{n+2}\)=\(1-\frac{1}{n+2}\)

Ta có:\(1-\frac{1}{n+2}=\frac{2015}{2016}\Rightarrow\)\(\frac{1}{n+2}=1-\frac{2015}{2016}\)

\(\Rightarrow\)\(\frac{1}{n+2}=\frac{1}{2016}=n+2=2016\)

\(\Rightarrow\)\(n=2014\)

Vậy\(n=2014\)

\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{n\cdot\left(n+2\right)}<\frac{2003}{2004}\)

\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}<\frac{2003}{2004}\)

\(\Rightarrow1-\frac{1}{n+2}<\frac{2003}{2004}\)

\(\Rightarrow\frac{1}{n+2}>\frac{1}{2004}\)

\(\Rightarrow n+2<2004\)

\(\Rightarrow n=2002\)

nhầm bước cuối

\(\Rightarrow n<2002\)

18 tháng 3 2017

Đặt A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)

A=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)

A = \(1-\frac{1}{n+2}\)

A= \(\frac{n+1}{n+2}\)=> Để A<2003/2004 thì \(\left(n+1\right).2004< \left(n+2\right).2003\)

\(\Leftrightarrow2004n+2004< 2003n+4006\)

\(\Leftrightarrow n< 2002\)

18 tháng 3 2017

1/1-1/3+1/3-1/5+1/5-1/7+....+1/n-1/(n+2)

=1-1/(n+2)=(n+1)/(n+2)

Suy ra n =2001

23 tháng 3 2017

1/1.3+1/3.5+............+1/x.(x+2) = 50/102

2/1.3+2/3.3+...........+2/x.(x+2) =50/51

1-1/x+2=50/51

x+1/x+2=50/51

(x+1).51=(x+2).50

51x+51=50x+100

51x-50x=100-51

x=49

vay x=49