Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow-\dfrac{2}{9}+\dfrac{2}{3}-\dfrac{4}{9}>=x>=\dfrac{3}{7}-\dfrac{7}{5}+\dfrac{11}{7}+\dfrac{2}{5}\)
=>0>=x>=1
=>\(x\in\varnothing\)
5^x . 5^x+1 . 5 ^x+2 <100...0:2^18 <=>5^3x+3 <10^18:2^18= (10:2)^18 =5^18 <=>3x +3 <18 <=>3x<15 <=>x<5 <=>x=0,1,2,3,4 k nha ok thank
Ta có: 5x+x+x+3 ≤ 1018 : 218
⇒53x+3 ≤ 518
⇒3x + 3 ≤ 18 ⇒ 3x+3 ≤ 15
⇒ x ≤ 5
Vậy x ϵ (0;1;2;3;4;5)
Theo bài ra, ta có:
5x . 5x+1 . 5x+2 = 1018 : 218
⇒⇒ 5x . 5x . 5 . 5x . 52 = (10:2)18
⇒⇒ (5x . 5x . 5x).(5.52) = 518
⇒⇒ 53x . 53 = 518
⇒⇒ 53x = 518 : 53
⇒⇒ 53x = 515
⇒⇒ 3x = 15
⇒⇒ x = 5
5x.5x+1.5x+2 < hoặc = 10...0(18 chữ số 0) : 218
= 5x.5x.5x+1+2 < hoặc = 1018 : 218
= 5x.5x.5x+3 < hoặc = ( 10:2)18
= 5x.5x.5x+3 < hoặc = 518
= 5x.5x.5x < hoặc = 518-3
= 5x+x+x < hoặc = 515
= 5x.3 < hoặc = 515
để tìm x ta phải tính riêng số mũ
x.3 < hoặc = 15
x < hoặc = 15 : 3
x < hoặc = 5 (x E N)
suy ra x E {0;1;2;3;4;5}
vậy x E {0;1;2;3;4;5}
\(5^x.5^{x+1}.5^{x+2}\le10^{18}:2^{18}\)
\(5^x.5^x.5.5^x.5^2\le5^{18}.2^{18}:2^{18}\)
\(5^{3x}.5^3\le5^{18}\)
\(5^3.5^x.5^3\le5^{18}\)
\(5^x\le5^{18}:5^6\)
\(5^x\le5^{12}\)
\(\Rightarrow x\le12\)
\(\Rightarrow x\in\left\{0,1,2,3,4,5,6,7,8,9,10,11,12\right\}\)
18 chữ số 0 nhé