K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

\(\frac{x-1}{2016}+\frac{x-10}{1997}+\frac{x-19}{1988}=3\)

\(pt\Leftrightarrow\frac{x-1}{2016}-1+\frac{x-10}{1997}-1+\frac{x-19}{1988}-1=0\)

\(\Leftrightarrow\frac{x-2017}{2016}+\frac{x-2017}{1997}+\frac{x-2017}{1988}=0\)

\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{1997}+\frac{1}{1988}\right)=0\)

Dễ thấy: \(\frac{1}{2016}+\frac{1}{1997}+\frac{1}{1988}\ne0\)

\(\Rightarrow x-2017=0\Rightarrow x=2017\)

28 tháng 11 2017

ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2006}\)    (x;y;z khác 0)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)(vì x+y+z=2006)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-\left(x+y+z\right)}{\left(x+y+z\right).z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{\left(x+y+z\right).z}\)

\(\Leftrightarrow-\left(x+y\right)xy=\left(x+y\right)\left(xz+yz+z^2\right)\)  (vì x;y;z khác 0)

\(\Leftrightarrow\left(x+y\right)\left(xy+yz+xz+z^2\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=>  x+y=0 hoặc y+z=0 hoặc z+x=0

mà x+y+z=2006 nên

z=2006 hoặc x=2006 hoặc y=2006 

=> đpcm

17 tháng 9 2016

đề sai bạn ơi phải là x-1 / 2016 chứ  CÁCH GIẢI

ta có x-1/2006 + x-10/1997 + x-19/1988=3 <=> x-1 / 2006 - 1 + x - 10 / 1997 -1 + x-19/1988 - 1 = 0 <=> x-2007 / 2006 + x-2007 / 1997 + x-2007 / 1988 = 0 <=> (x-2007)(1/2006 + 1/1997 + 1/1988) = 0 

Do 1/2006 + 1/1997 + 1/1988 khác 0 nên x-2007 = 0 => x = 2007 

                                                                        Vậy x = 2007

19 tháng 2 2016

giải thế này chăng ???

xy+1=0

=>xy=-1

\(\Leftrightarrow\frac{x^2y+2x}{xy+1}=\frac{10}{7}\)

\(\Rightarrow\frac{x^2y+2x}{xy+1}-\frac{10}{7}=0\)

\(\Rightarrow\frac{\left(7x^2-10x\right)y+14x-10}{7\left(xy+1\right)}=0\)

<=>(7x2-10x)y+14x-10=0

\(\Rightarrow\frac{1}{7\left(xy+1\right)}=0\)

=>x(7x-10)=0

<=>7x2-10x=0

áp dụng denta ta có :

=>(-10)2-(4.7.0)=100

\(\Rightarrow x_{1,2}=\frac{-b+-\sqrt{D}}{2a}=\frac{+-\sqrt{100}+\left(10\right)}{14}\)

=>x1=\(\frac{10}{7}\) ; x2=0

19 tháng 2 2016

nhưng cái này x;y;z=1;2;3 cơ

18 tháng 10 2020

Ta có: 

Vì \(\frac{2}{3}< x< \frac{13}{2}\Rightarrow\hept{\begin{cases}3x-2>0\\10-x>0\\13-2x>0\end{cases}}\)

Khi đó: \(\frac{1}{3x-2}-\frac{1}{x-10}+\frac{1}{13-2x}\)

\(=\frac{1}{3x-2}+\frac{1}{10-x}+\frac{1}{13-2x}\) \(\left(1\right)\)

Áp dụng BĐT Cauchy Schwarz ta được:

\(\left(1\right)\ge\frac{\left(1+1+1\right)^2}{3x-2+10-x+13-2x}\)

\(=\frac{3^2}{21}=\frac{3}{7}\)

Vậy với \(\frac{2}{3}< x< \frac{13}{2}\) thì \(\frac{1}{3x-2}-\frac{1}{x-10}+\frac{1}{13-2x}\ge\frac{3}{7}\)

23 tháng 4 2021

Từ giả thiết ta có :

\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

ta có : \(Q=\frac{y+2}{x^2}+\frac{z+2}{y^2}+\frac{x+2}{z^2}\)

\(=\frac{\left(x+1\right)+\left(y+1\right)}{x^2}+\frac{\left(y+1\right)+\left(z+1\right)}{y^2}+\frac{\left(z+1\right)+\left(x+1\right)}{z^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\left(x+1\right)\left(\frac{1}{z^2}+\frac{1}{x^2}\right)+\left(y+1\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(z+1\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge\frac{2\left(x+1\right)}{zx}+\frac{2\left(y+1\right)}{xy}+\frac{2\left(z+1\right)}{yz}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2\)

Áp dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Dấu " = " xảy ra khi và chỉ khi a = b = c

Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt{3}\)

Do đó : \(Q\ge\sqrt{3}+2\). Dấu " = " xảy ra 

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\\z+y+z=xyz\end{cases}\Leftrightarrow x=y=z=\sqrt{3}}\)

Vậy Min \(Q=\sqrt{3}+2\)khi \(x=y=z=\sqrt{3}\)