Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\sqrt{x^2-4}=\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)}.\sqrt{\left(x+2\right)}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy x=2 hoặc x=-1
b)
\(\Leftrightarrow\sqrt{x-1}+5\sqrt{4.\left(x-1\right)}-\sqrt{9.\left(x-1\right)}< 4\)
\(\Leftrightarrow\sqrt{x-1}+10\sqrt{x-1}-3\sqrt{x-1}< 4\)
\(\Leftrightarrow\left(1+10-3\right)\sqrt{x-1}< 4\)
\(\Leftrightarrow8\sqrt{x-1}< 4\)
\(\Leftrightarrow\sqrt{x-1}< \frac{1}{2}\)
\(\Leftrightarrow x-1< \frac{1}{4}\)
\(\Leftrightarrow x< \frac{5}{4}\)
Vậy...
\(đk:x\ge1\)
\(pt\Leftrightarrow3\sqrt{x-1}-\sqrt{x-1}+4\sqrt{x-1}=12\)
\(\Leftrightarrow6\sqrt{x-1}=12\Leftrightarrow\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\Leftrightarrow x=1+4=5\left(N\right)\)
a: \(B=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-4}\cdot\dfrac{\sqrt{x}+2}{x+16}=\dfrac{1}{\sqrt{x}-2}\)
b: Khi x=9 thì B=1/(3-2)=1
Bài a,b,c,e,g,i thì đặt điều kiện rồi bình phương 2 vế rồi giải, bài j chuyển vế rồi bình phương
Chỉ trình bày lời giải, tự tìm điều kiện nha :v
d) \(\sqrt{x+2\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Rightarrow x-1=1\Leftrightarrow x=2\)
f) \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-4}+2=2\)
\(\Leftrightarrow\sqrt{x-4}=0\)
\(\Rightarrow x-4=0\Leftrightarrow x=4\)
Bài 4 : Tìm x biết:
a, 4x2 - 49 = 0
\(\Leftrightarrow\) (2x)2 - 72 = 0
\(\Leftrightarrow\) (2x - 7)(2x + 7) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-7=0\\2x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b, x2 + 36 = 12x
\(\Leftrightarrow\) x2 + 36 - 12x = 0
\(\Leftrightarrow\) x2 - 2.x.6 + 62 = 0
\(\Leftrightarrow\) (x - 6)2 = 0
\(\Leftrightarrow\) x = 6
e, (x - 2)2 - 16 = 0
\(\Leftrightarrow\) (x - 2)2 - 42 = 0
\(\Leftrightarrow\) (x - 2 - 4)(x - 2 + 4) = 0
\(\Leftrightarrow\) (x - 6)(x + 2) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
f, x2 - 5x -14 = 0
\(\Leftrightarrow\) x2 + 2x - 7x -14 = 0
\(\Leftrightarrow\) x(x + 2) - 7(x + 2) = 0
\(\Leftrightarrow\) (x + 2)(x - 7) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\)
\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
\(\Rightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=16-\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{36}\sqrt{x-1}-\sqrt{9}\sqrt{x-1}-\sqrt{4}\sqrt{x-1}=16-\sqrt{x-1}\)
\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}=16-\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{x-1}=16-\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{x-1}+\sqrt{x-1}=16\)
\(\Leftrightarrow2\sqrt{x-1}=16\)
\(\Leftrightarrow\sqrt{x-1}=8\)
\(\Leftrightarrow x-1=64\)
\(\Leftrightarrow x=64+1\)
\(\Leftrightarrow x=65\)
Vậy \(x=65\)
\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
<=> \(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
<=> \(\sqrt{x-1}\left(6-3-2+1\right)=16\)
<=> \(\sqrt{x-1}=8\)
<=> \(x-1=64\)
<=> \(x=65\)
Vậy nghiệm của PT: S= \(\left\{65\right\}\)
P/s: Sai đừng trách mk nha!