Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\dfrac{13}{x-1}\in Z\\ \Rightarrow\left(x-1\right)\inƯ\left(13\right)\\ \Rightarrow\left(x-1\right)\in\left\{1;-1;13;-13\right\}\\ \Rightarrow x\in\left\{2;0;14;-12\right\}\)
b)
\(\dfrac{x+3}{x-2}=\dfrac{x-2+5}{x-2}=\dfrac{x-2}{x-2}+\dfrac{5}{x-2}=1+\dfrac{5}{x-2}\\ 1+\dfrac{5}{x-2}\in Z\\ \Rightarrow\dfrac{5}{x-2}\in Z\\ \Rightarrow\left(x-2\right)\inƯ\left(5\right)\\ \Rightarrow\left(x-2\right)\in\left\{1;-1;5;-5\right\}\\ \Rightarrow x\in\left\{3;1;7;-3\right\}\)
tham khảo
https://olm.vn/hoi-dap/detail/99049659825.html
b) ĐKXĐ: \(x\ne\dfrac{1}{2}\)
Để phân số \(\dfrac{-4}{2x-1}\) là số nguyên thì \(-4⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(-4\right)\)
\(\Leftrightarrow2x-1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow2x\in\left\{2;0;3;-1;5;-3\right\}\)
\(\Leftrightarrow x\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2};\dfrac{5}{2};-\dfrac{3}{2}\right\}\)
mà x là số nguyên
nên \(x\in\left\{1;0\right\}\)(thỏa ĐK)
Vậy: \(x\in\left\{1;0\right\}\)
a) \(-\dfrac{3}{x-1}\in\) \(\mathbb{Z}\) khi x - 1 là ước của 3. Mà ước của 3 là -1; -3; 1; 3
Ta có bảng:
x - 3 | -3 | -1 | 1 | 3 |
x | 0 | 2 | 4 | 6 |
d) \(\dfrac{3x+7}{x-1}=\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\)
Để giá trị của biểu thức là số nguyên thì x - 1 là ước của 10.
Làm tương tự như câu a.
Các ý còn lại giống phương pháp của câu a và d
a,
=> \(x\inƯ_3\)
Còn lại tự tính
b,
=> \(x\inƯ_8\)
c,
@@
Để -3/x-1 nguyên thì x-1 thuộc ước của -3 gồm +-1;+-3
Rồi từ đó lập bảng giá trị và tìm x bình thường
Ta có 4x-1 = 4x - 12 + 12 - 1 = 4x-12 +11 = 4.(x+3) + 11
Để p/s 4x-1/3-x là số nguyên thì 4x-1 chia hết cho 3-x hay 4.(x+3)+11 chia hết cho 3-x mà 4.(x+3) chia hết cho 3-x nên 11 chia hết cho 3-x suy ra 3-x thuộc U(11)
Mã U(11) = {-11;-1;1;11} suy ra 3-x thuộc {-11;-1;1;11}
Vì x là số nguyên nên ta có bảng sau
3-x | -11 | -1 | 1 | 11 |
x | 14 | 4 | 2 | -8 |
N/xét | Chon | Chon | Chon | Chon |
Vậy với x thuộc {-8;2;4;14} thì 4x-1/3-x là số nguyên
a, \(x-1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
b, \(2x-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
2x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 1 | 0 | loại | loại | loại | loại |
c, \(\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\Rightarrow x-1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
x-1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | 2 | 0 | 3 | -1 | 6 | -4 | 11 | -9 |
d, \(\dfrac{4\left(x-3\right)+3}{-\left(x-3\right)}=-4-\dfrac{3}{x+3}\Rightarrow x+3\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x+3 | 1 | -1 | 3 | -3 |
x | -2 | -4 | 0 | -6 |
a) Để \(\frac{3}{x-1}\)là số nguyên thì 3 \(⋮\)x-1
\(\Rightarrow\)x-1\(\in\)Ư(3)={1;3;-1;-3}
+)x-1=....;....+)x+1=-3