Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Lời giải:
a. Với $x$ nguyên, để biểu thức có giá trị nguyên thì $x-1$ là ước của $2$
$\Rightarrow x-1\in\left\{1; -1; 2;-2\right\}$
$\Rightarrow x\in\left\{2; 0; 3; -1\right\}$
b.
$\frac{x-2}{x-1}=\frac{(x-1)-1}{x-1}=1-\frac{1}{x-1}$
Để biểu thức nhận giá trị nguyên thì $\frac{1}{x-1}$ nguyên
$\Rightarrow x-1$ là ước của $1$
$\Rightarrow x-1\in\left\{1; -1\right\}$
$\Rightarrow x\in\left\{2; 0\right\}$
a, \(x-1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
b, \(2x-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
2x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 1 | 0 | loại | loại | loại | loại |
c, \(\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\Rightarrow x-1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
x-1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | 2 | 0 | 3 | -1 | 6 | -4 | 11 | -9 |
d, \(\dfrac{4\left(x-3\right)+3}{-\left(x-3\right)}=-4-\dfrac{3}{x+3}\Rightarrow x+3\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x+3 | 1 | -1 | 3 | -3 |
x | -2 | -4 | 0 | -6 |
TH1:nếu x-3<0 <=>A<0
TH2:nếu x-3>0<=>x-3 lớn nhất
Chọn TH1:x-3<0
Để A nhỏ nhất<=>x-3 lớn nhất
Mà x-3<0=>x-3=-1
=>x=2.Khi đó A=-1
Vậy x=2 thì A nhỏ nhất
\(\dfrac{x-2}{x-1}=\dfrac{x-1-1}{x-1}=\dfrac{x-1}{x-1}-\dfrac{1}{x-1}=1-\dfrac{1}{x-1}\)
Để nguyên thì \(x-1\in U\left(1\right)=\left\{\pm1\right\}\)
x-1=1 => x=2
x-1=-1 => x=0
\(A=\frac{3}{x-1}\)
=> x - 1 \(\in\)Ư(3) = {\(\pm1;\pm3\)}
x -1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
b) \(B=\frac{x+2}{x+1}=\frac{x+1+1}{x+1}=1+\frac{1}{x+1}\)
=> x + 1 \(\in\)Ư(1) = { \(\pm\)1}
=> x = 0 hoặc x = -2
c) \(C=\frac{5}{2x+7}\)
=> 2x + 7 \(\in\)Ư(5) = { \(\pm1;\pm5\)}
=> 2x \(\in\){-6 ; -8 ; -2 ; -12}
=> x \(\in\){ -3; -4 ; -1; -6}
d) \(D=\frac{11x-8}{x+2}=\frac{11\left(x+2\right)-30}{x+2}=11-\frac{30}{x+2}\)
=> 30 \(⋮\)x + 2 => x + 2 thuộc Ư(30)
Tự xét
Bg
a) Ta có: A = \(\frac{3}{x-1}\) (x thuộc Z)
Để A nguyên thì 3 \(⋮\)x - 1
=> x - 1 thuộc Ư(3)
Ư(3) = {1; -1; 3; -3}
=> x - 1 = 1 hay -1 hay 3 hay -3
=> x = 1 + 1 hay -1 + 1 hay 3 + 1 hay -3 + 1
=> x = {2; 0; 4; -2}
b) Ta có: B = \(\frac{x+2}{x+1}\) (x thuộc Z)
Để B nguyên thì x + 2 \(⋮\)x + 1
=> x + 2 - (x + 1) \(⋮\)x + 1
=> x + 2 - x - 1 \(⋮\)x + 1
=> x - x + (2 - 1) \(⋮\)x + 1
=> 1 \(⋮\)x + 1
=> x + 1 thuộc Ư(1)
Ư(1) = {1; -1}
=> x + 1 = 1 hay -1
=> x = 1 - 1 hay -1 - 1
=> x = {0; -2}
c) Ta có: C = \(\frac{5}{2x+7}\) (x thuộc Z)
Để C nguyên thì 5 \(⋮\)2x + 7
=> 2x + 7 thuộc Ư(5)
Ư(5) = {1; - 1; 5; -5}
=> 2x + 7 = 1 hay -1 hay 5 hay -5
......... (Tự làm)
=> x = {-3; -4; -1; -6}
d) Ta có: D = \(\frac{11x-8}{x+2}\) (x thuộc Z)
Để D nguyên thì 11x - 8 \(⋮\)x + 2
=> 11x - 8 - [11(x + 2)] \(⋮\)x + 2
=> 11x - 8 - 11x - 11.2 \(⋮\)x + 2
=> 11x - 11x - (22 + 8) \(⋮\)x + 2
=> 30 \(⋮\)x + 2
=> x + 2 thuộc Ư(30)
Ư(30) = {...}
.... (Tự làm)
=> x = {…}
Lời giải:
$B=\frac{(x+1)+1}{x+1}=1+\frac{1}{x+1}$
Để $B$ nguyên thì $\frac{1}{x+1}$ nguyên.
Với $x$ nguyên, để $\frac{1}{x+1}$ nguyên thì $1\vdots x+1$
$\Rightarrow x+1\in\left\{\pm 1\right\}$
$\Rightarrow x\in\left\{0;-2\right\}$
Với $x$ nguyên, để $\frac{5}{2x+7}$ nguyên thì:
$5\vdots 2x+7$
$\Rightarrow 2x+7\in\left\{\pm 1;\pm 5\right\}$
$\Rightarrow x\in\left\{-3;-4;-1;-6\right\}$
B=\(\dfrac{x+2}{x+1}=1\dfrac{1}{x+1}\)(x khác -1)
=> Để B nguyên thì 1 chia hết cho x+1
=> x+1 ∈Ư(1)={1,-1}
Vậy để B nguyên thì x∈{0,-2}
C=\(\dfrac{5}{2x+7}\)(x khác -7/2)
Để C nguyên thì 5 chia hết cho 2x+7
=>2x+7∈Ư(5)={1,-1,5,-5}
Để C nguyên thì x∈{-3,-4,-1,-6}