K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

b) Để \(B=\frac{x+2}{x+1}\)có giá trị nguyên thì \(x+2⋮x+1\)

Ta có : \(x+2⋮x+1\)

\(\Rightarrow x+1+1⋮x+1\)

Mà \(x+1⋮x+1\)

\(\Rightarrow1⋮x+1\)

\(\Rightarrow x+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

+) x+1=-1\(\Rightarrow\)x=-2  (thỏa mãn)

+) x+1=1\(\Rightarrow\)x=0  (thỏa mãn)

Vậy \(x\in\left\{-2;0\right\}\)

Các phần sau bạn làm tương tự nhé!

Học tốt!

#Huyền#

b) ĐKXĐ: \(x\ne\dfrac{1}{2}\)

Để phân số \(\dfrac{-4}{2x-1}\) là số nguyên thì \(-4⋮2x-1\)

\(\Leftrightarrow2x-1\inƯ\left(-4\right)\)

\(\Leftrightarrow2x-1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow2x\in\left\{2;0;3;-1;5;-3\right\}\)

\(\Leftrightarrow x\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2};\dfrac{5}{2};-\dfrac{3}{2}\right\}\)

mà x là số nguyên 

nên \(x\in\left\{1;0\right\}\)(thỏa ĐK)

Vậy: \(x\in\left\{1;0\right\}\)

NA
Ngoc Anh Thai
Giáo viên
12 tháng 4 2021

a) \(-\dfrac{3}{x-1}\in\) \(\mathbb{Z}\) khi x - 1 là ước của 3. Mà ước của 3 là -1; -3; 1; 3

Ta có bảng:

x - 3      -3       -1       1       3
   x       0        2       4       6

d) \(\dfrac{3x+7}{x-1}=\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\)

Để giá trị của biểu thức là số nguyên thì x - 1 là ước của 10.

Làm tương tự như câu a.

Các ý còn lại giống phương pháp của câu a và d

2 tháng 5 2017

a) Với mọi x nguyên ta luôn có:  \(\left(x-1\right)^2\ge0\)

Dấu "=" xảy ra  \(\Leftrightarrow\)  \(\left(x-1\right)^2=0\)  \(\Leftrightarrow\)  \(x-1=0\)  \(\Leftrightarrow\)  x = 1.

Do đó \(A=\left(x-1\right)^2+2008\ge0+2008=2008\)

Vậy GTNN của A là 2008 tại x = 1.

b) Với mọi x nguyên ta luôn có \(\left|x+4\right|\ge0\)

.Dấu "=" xảy ra  \(\Leftrightarrow\)  \(\left|x+4\right|=0\)  \(\Leftrightarrow\)  \(x+4=0\)  \(\Leftrightarrow\)  x = -4.

Do đó \(B=\left|x+4\right|+1996\ge0+1996=1996\)

Vậy GTNN của B là 1996 tại x = -4.

2 tháng 5 2017

c)  \(C=\frac{5}{x-2}\) nhỏ nhất  \(\Leftrightarrow\)  x - 2 lớn nhất, mà x nguyên nên ko tìm đc giá trị của x

bn xem lại đề câu c, d được ko

chắc đề là: "Tìm x nguyên để   \(C=\frac{5}{x-2}\) đạt giá trị nguyên nhỏ nhất"

7 tháng 8 2020

\(A=\frac{3}{x-1}\)

=> x - 1 \(\in\)Ư(3) = {\(\pm1;\pm3\)}

x -11-13-3
x204-2

b) \(B=\frac{x+2}{x+1}=\frac{x+1+1}{x+1}=1+\frac{1}{x+1}\)

=> x + 1 \(\in\)Ư(1) = { \(\pm\)1}

=> x = 0 hoặc x = -2

c) \(C=\frac{5}{2x+7}\)

=> 2x + 7 \(\in\)Ư(5) = { \(\pm1;\pm5\)}

=> 2x \(\in\){-6 ; -8 ; -2 ; -12}

=> x \(\in\){ -3; -4 ; -1; -6}

d) \(D=\frac{11x-8}{x+2}=\frac{11\left(x+2\right)-30}{x+2}=11-\frac{30}{x+2}\)

=> 30 \(⋮\)x + 2 => x + 2 thuộc Ư(30)

Tự xét

7 tháng 8 2020

Bg

a) Ta có: A = \(\frac{3}{x-1}\)    (x thuộc Z)

Để A nguyên thì 3 \(⋮\)x - 1

=> x - 1 thuộc Ư(3)

Ư(3) = {1; -1; 3; -3}

=> x - 1 = 1 hay -1 hay 3 hay -3

=> x = 1 + 1 hay -1 + 1 hay 3 + 1 hay -3 + 1

=> x = {2; 0; 4; -2}

b) Ta có: B = \(\frac{x+2}{x+1}\)   (x thuộc Z)

Để B nguyên thì x + 2 \(⋮\)x + 1

=> x + 2 - (x + 1) \(⋮\)x + 1

=> x + 2 - x - 1 \(⋮\)x + 1

=> x - x + (2 - 1) \(⋮\)x + 1

=> 1 \(⋮\)x + 1

=> x + 1 thuộc Ư(1)

Ư(1) = {1; -1}

=> x + 1 = 1 hay -1

=> x = 1 - 1 hay -1 - 1

=> x = {0; -2}

c) Ta có: C = \(\frac{5}{2x+7}\)    (x thuộc Z)

Để C nguyên thì 5 \(⋮\)2x + 7

=> 2x + 7 thuộc Ư(5)

Ư(5) = {1; - 1; 5; -5}

=> 2x + 7 = 1 hay -1 hay 5 hay -5

......... (Tự làm)

=> x = {-3; -4; -1; -6}

d) Ta có: D = \(\frac{11x-8}{x+2}\)  (x thuộc Z)

Để D nguyên thì 11x - 8 \(⋮\)x + 2

=> 11x - 8 - [11(x + 2)] \(⋮\)x + 2

=> 11x - 8 - 11x - 11.2 \(⋮\)x + 2

=> 11x - 11x - (22 + 8) \(⋮\)x + 2

=> 30 \(⋮\)x + 2

=> x + 2 thuộc Ư(30)

Ư(30) = {...}

.... (Tự làm)

=> x = {…}

19 tháng 3 2020

a, \(M=\left(x-2\right)^2-22\)

Có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2-22\ge-22\forall x\)

hay GTNN của M là -22 

Dấu "=" xảy ra tại  \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy GTNN của M là -22 tại x=2.

b, \(N=9-|x+3|\)

Có: \(|x+3|\ge0\forall x\)

\(\Rightarrow9-|x+3|\le9\forall x\)

hay GTLN của N là 9

Dấu "=" xảy ra tại \(|x+3|=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy GTLN của N là 9 tại x = -3.

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

7 tháng 3 2020

a) \(A=\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)

Thay x=4 (tm) vào A ta có: \(A=\frac{6\cdot4-1}{3\cdot4+2}=\frac{23}{14}\)

Thay x=-1(tm) vào A ta có: \(A=\frac{-1\cdot6-1}{3\cdot\left(-1\right)+2}=\frac{-6-1}{-3+2}=\frac{-7}{-1}=7\)

Thay x=0 (tm) ta có: \(A=\frac{6\cdot0-1}{3\cdot0+2}=\frac{-1}{2}\)

Vậy A=\(\frac{23}{14}\)khi x=4; \(A=7\)khi x=-1; A=\(\frac{-1}{2}\)khi x=0

b) A=\(\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)

Để A là số nguyên thì 6x-1 chia hết cho 3x+2

\(\Leftrightarrow A=\frac{2\left(3x+2\right)-5}{3x+2}=2-\frac{5}{3x+2}\)

Để A nguyên thì \(\frac{5}{3x+2}\)nguyên => 5 chia hết cho 3x+2

Vì x thuộc Z => 3x+2 thuộc Z => 3x+2 thuộc Ư (5)={-5;-1;1;5}

Ta có bảng

3x+2-5-115
3x-7-3-13
x\(\frac{-7}{3}\)-1\(\frac{-1}{3}\)1

Vậy x={-1;1} thì A nguyên

7 tháng 7 2018

a) ta có \(A\ge0\)

\(\Leftrightarrow\left|x-5\right|\ge0\)

=> \(A_{min}=0\) khi và chi khi x=5

7 tháng 7 2018

b) \(B\ge0\\ \Leftrightarrow\left|5+x\right|\ge0\Leftrightarrow B_{min}=0\)

Khi và chỉ khi x=-5