Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)
Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)
b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)
Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)
a: \(x=\left(-\dfrac{2}{3}\right)^5:\left(-\dfrac{2}{3}\right)^2=\left(-\dfrac{2}{3}\right)^3=-\dfrac{8}{27}\)
b: =>x-1/2=1/3
=>x=5/6
c: =>2/3x-1=0 hoặc 3/4x+1/2=0
=>x=3/2 hoặc x=-1/2:3/4=-1/2*4/3=-4/6=-2/3
d =>4/9:x=10/3:9/4=10/3*4/9=40/27
=>x=4/9:40/27=4/9*27/40=108/360=3/10
`|x+1/3|+|x+2/3|+|x+2/5|+|x+3/2|=33x`
`@TH1: x >= -1/3`
`=>x+1/3+x+2/3+x+2/5+x+3/2=33x`
`=>29x=29/10`
`=>x=1/10` (t/m)
`@TH2: -2/3 <= x < -1/3`
`=>-x-1/3+x+2/3+x+2/5+x+3/2=33x`
`=>31x=67/30`
`=>x=67/930` (ko t/m)
`@TH3:-2/5 <= x < -2/3`
`=>-x-1/3-x-2/3+x+2/5+x+3/2=33x`
`=>33x=9/10`
`=>x=3/110` (ko t/m)
`@TH4:-3/2 <= x < -2/5`
`=>-x-1/3-x-2/3-x-2/5+x+3/2=33x`
`=>35x=1/10`
`=>x=1/350` (ko t/m)
`@TH5: x < -3/2`
`=>-x-1/3-x-2/3-x-2/5-x-3/2=33x`
`=>37x=-29/10`
`=>x=-29/370` (ko t/m)
có VT \(\ge\) 0 với mọi x
=>VP:33x\(\ge\) 0 \(\Rightarrow\) x\(\ge\)0
\(\Rightarrow\) |x+1/3|\(\ge\)0;|x+2/3|\(\ge\) 0;|x+2/5|\(\ge\) 0;|x+3/2|\(\ge\) 0
=> (x+1/3)+(x+2/3)+(x+2/5)+(x+3/2)=33x
=>(x+x+x+x)+(1/3+2/3+2/5+3/2)=33x
=>4x+29/10=33x
=> 29/10=33x-4x
=>29/10=29x
=>x=29/10:29
=>x=1/10